Quantifying uncertainty on sediment loads using bootstrap confidence intervals
Load estimates are more informative than constituent concentrations alone, as they allow quantification of on- and off-site impacts of environmental processes concerning pollutants, nutrients and sediment, such as soil fertility loss, reservoir sedimentation and irrigation channel siltation. While s...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2017-01-01
|
Series: | Hydrology and Earth System Sciences |
Online Access: | http://www.hydrol-earth-syst-sci.net/21/571/2017/hess-21-571-2017.pdf |
_version_ | 1818525769411854336 |
---|---|
author | J. I. F. Slaets H.-P. Piepho P. Schmitter T. Hilger G. Cadisch |
author_facet | J. I. F. Slaets H.-P. Piepho P. Schmitter T. Hilger G. Cadisch |
author_sort | J. I. F. Slaets |
collection | DOAJ |
description | Load estimates are more informative than constituent
concentrations alone, as they allow quantification of on- and off-site
impacts of environmental processes concerning pollutants, nutrients and
sediment, such as soil fertility loss, reservoir sedimentation and irrigation
channel siltation. While statistical models used to predict constituent
concentrations have been developed considerably over the last
few years,
measures of uncertainty on constituent loads are rarely reported. Loads are
the product of two predictions, constituent concentration and discharge,
integrated over a time period, which does not make it straightforward to
produce a standard error or a confidence interval. In this paper, a linear
mixed model is used to estimate sediment concentrations. A bootstrap method
is then developed that accounts for the uncertainty in the concentration and
discharge predictions, allowing temporal correlation in the constituent data,
and can be used when data transformations are required. The method was tested
for a small watershed in Northwest Vietnam for the period 2010–2011. The
results showed that confidence intervals were asymmetric, with the highest
uncertainty in the upper limit, and that a load of 6262 Mg year<sup>−1</sup> had
a 95 % confidence interval of (4331, 12 267) in 2010 and a load of
5543 Mg an interval of (3593, 8975) in 2011. Additionally, the approach
demonstrated that direct estimates from the data were biased downwards
compared to bootstrap median estimates. These results imply that constituent
loads predicted from regression-type water quality models could frequently be
underestimating sediment yields and their environmental impact. |
first_indexed | 2024-12-11T06:13:28Z |
format | Article |
id | doaj.art-7bb7dc8052b941e283aa9574855e61f8 |
institution | Directory Open Access Journal |
issn | 1027-5606 1607-7938 |
language | English |
last_indexed | 2024-12-11T06:13:28Z |
publishDate | 2017-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Hydrology and Earth System Sciences |
spelling | doaj.art-7bb7dc8052b941e283aa9574855e61f82022-12-22T01:18:03ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382017-01-0121157158810.5194/hess-21-571-2017Quantifying uncertainty on sediment loads using bootstrap confidence intervalsJ. I. F. Slaets0H.-P. Piepho1P. Schmitter2T. Hilger3G. Cadisch4Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, Garbenstrasse 13, 70599 Stuttgart, GermanyBiostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart, GermanyThe International Water Management Institute, Nile Basin and East Africa Office, Addis Ababa, EthiopiaInstitute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, Garbenstrasse 13, 70599 Stuttgart, GermanyInstitute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, Garbenstrasse 13, 70599 Stuttgart, GermanyLoad estimates are more informative than constituent concentrations alone, as they allow quantification of on- and off-site impacts of environmental processes concerning pollutants, nutrients and sediment, such as soil fertility loss, reservoir sedimentation and irrigation channel siltation. While statistical models used to predict constituent concentrations have been developed considerably over the last few years, measures of uncertainty on constituent loads are rarely reported. Loads are the product of two predictions, constituent concentration and discharge, integrated over a time period, which does not make it straightforward to produce a standard error or a confidence interval. In this paper, a linear mixed model is used to estimate sediment concentrations. A bootstrap method is then developed that accounts for the uncertainty in the concentration and discharge predictions, allowing temporal correlation in the constituent data, and can be used when data transformations are required. The method was tested for a small watershed in Northwest Vietnam for the period 2010–2011. The results showed that confidence intervals were asymmetric, with the highest uncertainty in the upper limit, and that a load of 6262 Mg year<sup>−1</sup> had a 95 % confidence interval of (4331, 12 267) in 2010 and a load of 5543 Mg an interval of (3593, 8975) in 2011. Additionally, the approach demonstrated that direct estimates from the data were biased downwards compared to bootstrap median estimates. These results imply that constituent loads predicted from regression-type water quality models could frequently be underestimating sediment yields and their environmental impact.http://www.hydrol-earth-syst-sci.net/21/571/2017/hess-21-571-2017.pdf |
spellingShingle | J. I. F. Slaets H.-P. Piepho P. Schmitter T. Hilger G. Cadisch Quantifying uncertainty on sediment loads using bootstrap confidence intervals Hydrology and Earth System Sciences |
title | Quantifying uncertainty on sediment loads using bootstrap confidence intervals |
title_full | Quantifying uncertainty on sediment loads using bootstrap confidence intervals |
title_fullStr | Quantifying uncertainty on sediment loads using bootstrap confidence intervals |
title_full_unstemmed | Quantifying uncertainty on sediment loads using bootstrap confidence intervals |
title_short | Quantifying uncertainty on sediment loads using bootstrap confidence intervals |
title_sort | quantifying uncertainty on sediment loads using bootstrap confidence intervals |
url | http://www.hydrol-earth-syst-sci.net/21/571/2017/hess-21-571-2017.pdf |
work_keys_str_mv | AT jifslaets quantifyinguncertaintyonsedimentloadsusingbootstrapconfidenceintervals AT hppiepho quantifyinguncertaintyonsedimentloadsusingbootstrapconfidenceintervals AT pschmitter quantifyinguncertaintyonsedimentloadsusingbootstrapconfidenceintervals AT thilger quantifyinguncertaintyonsedimentloadsusingbootstrapconfidenceintervals AT gcadisch quantifyinguncertaintyonsedimentloadsusingbootstrapconfidenceintervals |