Numerical Analysis of Microcrack Propagation Characteristics and Influencing Factors of Serrated Structural Plane
The serrated structural plane is the basic unit of structural plane morphology. However, the understanding of its internal stress distribution, failure mode and crack evolution law was not clear enough in previous studies. In this paper, the shear mechanical properties of the serrated structural pla...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-07-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/15/15/5287 |
_version_ | 1797432844992118784 |
---|---|
author | Xing Zhang Hang Lin Jianxin Qin Rihong Cao Shaowei Ma Huihua Hu |
author_facet | Xing Zhang Hang Lin Jianxin Qin Rihong Cao Shaowei Ma Huihua Hu |
author_sort | Xing Zhang |
collection | DOAJ |
description | The serrated structural plane is the basic unit of structural plane morphology. However, the understanding of its internal stress distribution, failure mode and crack evolution law was not clear enough in previous studies. In this paper, the shear mechanical properties of the serrated structural planes were studied by numerical simulation, and the crack evolution law of the serrated structural planes and the effects of four microscopic parameters on the shear properties were analyzed. The results show that: (1) the number of microcracks increases with the increase in normal stress; the crack expansion rate is slow before the shear stress reaches the peak. After the shear stress reaches the peak, the crack expansion rate continues to increase, and the microcracks keep sprouting and expanding, and the number of microcracks tends to stabilize when the shear stress reaches the residual shear strength. (2) The particle contact stiffness ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>n</mi></msub><msup><mrow></mrow><mo>∗</mo></msup><mo>/</mo><msub><mi>k</mi><mi>s</mi></msub><msup><mrow></mrow><mo>∗</mo></msup></mrow></semantics></math></inline-formula> and parallel bond stiffness ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>n</mi></msub><mo>/</mo><msub><mi>k</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> were negatively correlated with the shear strength; and the particle contact modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>E</mi></semantics></math></inline-formula> and parallel bond modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>E</mi><mo>∗</mo></msup></mrow></semantics></math></inline-formula> were positively correlated with the shear strength. As the particle contact modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>E</mi></semantics></math></inline-formula> and parallel bond modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>E</mi><mo>∗</mo></msup></mrow></semantics></math></inline-formula> increase, the peak shear displacement gradually decreases. The parallel bond stiffness ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>n</mi></msub><mo>/</mo><msub><mi>k</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> has a negative correlation with the peak shear displacement. This study is expected to provide theoretical guidance for the microscopic parameter calibration and shear mechanical analysis of serrated structural planes. (3) Several XGBoost, WOA-XGBoost, and PSO-XGBoost algorithms are introduced to construct the quantitative prediction model, and the comparative analysis found that WOA-XGBoost has the best fitting effect and can be used for the prediction of shear strength. When using this model to calculate the weight shares of micro-parameters, it was found that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>n</mi></msub><msup><mrow></mrow><mo>∗</mo></msup><mo>/</mo><msub><mi>k</mi><mi>s</mi></msub><msup><mrow></mrow><mo>∗</mo></msup></mrow></semantics></math></inline-formula> has the greatest influence on shear strength, followed by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>E</mi><mo>∗</mo></msup></mrow></semantics></math></inline-formula>; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>E</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>n</mi></msub><mo>/</mo><msub><mi>k</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> had the least influence. |
first_indexed | 2024-03-09T10:07:30Z |
format | Article |
id | doaj.art-7bc276bda2594822bfca566cd6d5ed69 |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-09T10:07:30Z |
publishDate | 2022-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-7bc276bda2594822bfca566cd6d5ed692023-12-01T23:01:06ZengMDPI AGMaterials1996-19442022-07-011515528710.3390/ma15155287Numerical Analysis of Microcrack Propagation Characteristics and Influencing Factors of Serrated Structural PlaneXing Zhang0Hang Lin1Jianxin Qin2Rihong Cao3Shaowei Ma4Huihua Hu5School of Resources and Safety Engineering, Central South University, Changsha 410083, ChinaSchool of Resources and Safety Engineering, Central South University, Changsha 410083, ChinaSchool of Resources and Safety Engineering, Central South University, Changsha 410083, ChinaSchool of Resources and Safety Engineering, Central South University, Changsha 410083, ChinaSchool of Resources and Safety Engineering, Central South University, Changsha 410083, ChinaHunan Provincial Communications Planning, Survey and Design Institute, Changsha 410200, ChinaThe serrated structural plane is the basic unit of structural plane morphology. However, the understanding of its internal stress distribution, failure mode and crack evolution law was not clear enough in previous studies. In this paper, the shear mechanical properties of the serrated structural planes were studied by numerical simulation, and the crack evolution law of the serrated structural planes and the effects of four microscopic parameters on the shear properties were analyzed. The results show that: (1) the number of microcracks increases with the increase in normal stress; the crack expansion rate is slow before the shear stress reaches the peak. After the shear stress reaches the peak, the crack expansion rate continues to increase, and the microcracks keep sprouting and expanding, and the number of microcracks tends to stabilize when the shear stress reaches the residual shear strength. (2) The particle contact stiffness ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>n</mi></msub><msup><mrow></mrow><mo>∗</mo></msup><mo>/</mo><msub><mi>k</mi><mi>s</mi></msub><msup><mrow></mrow><mo>∗</mo></msup></mrow></semantics></math></inline-formula> and parallel bond stiffness ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>n</mi></msub><mo>/</mo><msub><mi>k</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> were negatively correlated with the shear strength; and the particle contact modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>E</mi></semantics></math></inline-formula> and parallel bond modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>E</mi><mo>∗</mo></msup></mrow></semantics></math></inline-formula> were positively correlated with the shear strength. As the particle contact modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>E</mi></semantics></math></inline-formula> and parallel bond modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>E</mi><mo>∗</mo></msup></mrow></semantics></math></inline-formula> increase, the peak shear displacement gradually decreases. The parallel bond stiffness ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>n</mi></msub><mo>/</mo><msub><mi>k</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> has a negative correlation with the peak shear displacement. This study is expected to provide theoretical guidance for the microscopic parameter calibration and shear mechanical analysis of serrated structural planes. (3) Several XGBoost, WOA-XGBoost, and PSO-XGBoost algorithms are introduced to construct the quantitative prediction model, and the comparative analysis found that WOA-XGBoost has the best fitting effect and can be used for the prediction of shear strength. When using this model to calculate the weight shares of micro-parameters, it was found that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>n</mi></msub><msup><mrow></mrow><mo>∗</mo></msup><mo>/</mo><msub><mi>k</mi><mi>s</mi></msub><msup><mrow></mrow><mo>∗</mo></msup></mrow></semantics></math></inline-formula> has the greatest influence on shear strength, followed by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>E</mi><mo>∗</mo></msup></mrow></semantics></math></inline-formula>; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>E</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>n</mi></msub><mo>/</mo><msub><mi>k</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> had the least influence.https://www.mdpi.com/1996-1944/15/15/5287numerical calculationserrated structural planeshear propertiescrack evolution |
spellingShingle | Xing Zhang Hang Lin Jianxin Qin Rihong Cao Shaowei Ma Huihua Hu Numerical Analysis of Microcrack Propagation Characteristics and Influencing Factors of Serrated Structural Plane Materials numerical calculation serrated structural plane shear properties crack evolution |
title | Numerical Analysis of Microcrack Propagation Characteristics and Influencing Factors of Serrated Structural Plane |
title_full | Numerical Analysis of Microcrack Propagation Characteristics and Influencing Factors of Serrated Structural Plane |
title_fullStr | Numerical Analysis of Microcrack Propagation Characteristics and Influencing Factors of Serrated Structural Plane |
title_full_unstemmed | Numerical Analysis of Microcrack Propagation Characteristics and Influencing Factors of Serrated Structural Plane |
title_short | Numerical Analysis of Microcrack Propagation Characteristics and Influencing Factors of Serrated Structural Plane |
title_sort | numerical analysis of microcrack propagation characteristics and influencing factors of serrated structural plane |
topic | numerical calculation serrated structural plane shear properties crack evolution |
url | https://www.mdpi.com/1996-1944/15/15/5287 |
work_keys_str_mv | AT xingzhang numericalanalysisofmicrocrackpropagationcharacteristicsandinfluencingfactorsofserratedstructuralplane AT hanglin numericalanalysisofmicrocrackpropagationcharacteristicsandinfluencingfactorsofserratedstructuralplane AT jianxinqin numericalanalysisofmicrocrackpropagationcharacteristicsandinfluencingfactorsofserratedstructuralplane AT rihongcao numericalanalysisofmicrocrackpropagationcharacteristicsandinfluencingfactorsofserratedstructuralplane AT shaoweima numericalanalysisofmicrocrackpropagationcharacteristicsandinfluencingfactorsofserratedstructuralplane AT huihuahu numericalanalysisofmicrocrackpropagationcharacteristicsandinfluencingfactorsofserratedstructuralplane |