Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA). Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambien...

Full description

Bibliographic Details
Main Authors: A. Zuend, J. H. Seinfeld
Format: Article
Language:English
Published: Copernicus Publications 2012-05-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/12/3857/2012/acp-12-3857-2012.pdf
_version_ 1818196388067934208
author A. Zuend
J. H. Seinfeld
author_facet A. Zuend
J. H. Seinfeld
author_sort A. Zuend
collection DOAJ
description The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA). Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH), as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality) and EVAPORATION (for pure compound vapor pressures) with oxidation product information from the Master Chemical Mechanism (MCM) for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of α-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH). Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1) non-ideality in the condensed phase needs to be considered and (2) liquid-liquid phase separation is a consequence of considerable deviations from ideal mixing in solutions containing inorganic ions and organics that cannot be ignored. Computationally much more efficient calculations relying on the assumption of a complete organic/electrolyte phase separation below a certain RH successfully reproduce gas-particle partitioning in systems in which the average oxygen-to-carbon (O:C) ratio is lower than ~0.6, as in the case of α-pinene SOA, and bear the potential for implementation in atmospheric chemical transport models and chemistry-climate models. A full equilibrium calculation is the method of choice for accurate offline (box model) computations, where high computational costs are acceptable. Such a calculation enables the most detailed predictions of phase compositions and provides necessary information on whether assuming a complete organic/electrolyte phase separation is a good approximation for a given aerosol system. Based on the group-contribution concept of AIOMFAC and O:C ratios as a proxy for polarity and hygroscopicity of organic mixtures, the results from the α-pinene system are also discussed from a more general point of view.
first_indexed 2024-12-12T01:33:17Z
format Article
id doaj.art-7bce6d8b6a43462ebb9d2dc8b5eedaf8
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-12T01:33:17Z
publishDate 2012-05-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-7bce6d8b6a43462ebb9d2dc8b5eedaf82022-12-22T00:42:54ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242012-05-011293857388210.5194/acp-12-3857-2012Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separationA. ZuendJ. H. SeinfeldThe partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA). Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH), as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality) and EVAPORATION (for pure compound vapor pressures) with oxidation product information from the Master Chemical Mechanism (MCM) for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of α-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH). Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1) non-ideality in the condensed phase needs to be considered and (2) liquid-liquid phase separation is a consequence of considerable deviations from ideal mixing in solutions containing inorganic ions and organics that cannot be ignored. Computationally much more efficient calculations relying on the assumption of a complete organic/electrolyte phase separation below a certain RH successfully reproduce gas-particle partitioning in systems in which the average oxygen-to-carbon (O:C) ratio is lower than ~0.6, as in the case of α-pinene SOA, and bear the potential for implementation in atmospheric chemical transport models and chemistry-climate models. A full equilibrium calculation is the method of choice for accurate offline (box model) computations, where high computational costs are acceptable. Such a calculation enables the most detailed predictions of phase compositions and provides necessary information on whether assuming a complete organic/electrolyte phase separation is a good approximation for a given aerosol system. Based on the group-contribution concept of AIOMFAC and O:C ratios as a proxy for polarity and hygroscopicity of organic mixtures, the results from the α-pinene system are also discussed from a more general point of view.http://www.atmos-chem-phys.net/12/3857/2012/acp-12-3857-2012.pdf
spellingShingle A. Zuend
J. H. Seinfeld
Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation
Atmospheric Chemistry and Physics
title Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation
title_full Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation
title_fullStr Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation
title_full_unstemmed Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation
title_short Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation
title_sort modeling the gas particle partitioning of secondary organic aerosol the importance of liquid liquid phase separation
url http://www.atmos-chem-phys.net/12/3857/2012/acp-12-3857-2012.pdf
work_keys_str_mv AT azuend modelingthegasparticlepartitioningofsecondaryorganicaerosoltheimportanceofliquidliquidphaseseparation
AT jhseinfeld modelingthegasparticlepartitioningofsecondaryorganicaerosoltheimportanceofliquidliquidphaseseparation