Fast resolution of integer Vandermonde systems

The resolution of polynomial interpolation problems with integer coefficients directly involves the open issue of the integer inversion of a general Vandermonde matrix defined over the field Z/pZ, for p prime number. The purpose of this paper is to demonstrate the possibility to invert a Vandermonde...

Full description

Bibliographic Details
Main Authors: Rosa di Salvo, Luigia Puccio
Format: Article
Language:English
Published: Accademia Peloritana dei Pericolanti 2014-10-01
Series:Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali
Online Access: http://dx.doi.org/10.1478/AAPP.921A2
_version_ 1818756392612265984
author Rosa di Salvo
Luigia Puccio
author_facet Rosa di Salvo
Luigia Puccio
author_sort Rosa di Salvo
collection DOAJ
description The resolution of polynomial interpolation problems with integer coefficients directly involves the open issue of the integer inversion of a general Vandermonde matrix defined over the field Z/pZ, for p prime number. The purpose of this paper is to demonstrate the possibility to invert a Vandermonde matrix with integer mod p coefficients and exactly compute the integer inverse matrix in the ring Mat(Z/pZ) of square matrices over Z/pZ through the new fast algorithm InVanderMOD. The explicit formula derived for the integer inversion of Vandermonde matrices entirely develops inside the field of the integers mod p, with due consideration to the operation of integer division. The inversion procedure InVanderMOD is valid for any prime number p and competitive in terms of computational effort, since its computational cost is less than O(n^3).
first_indexed 2024-12-18T05:54:19Z
format Article
id doaj.art-7bd88f60c91f44ab86da120a7425bd08
institution Directory Open Access Journal
issn 0365-0359
1825-1242
language English
last_indexed 2024-12-18T05:54:19Z
publishDate 2014-10-01
publisher Accademia Peloritana dei Pericolanti
record_format Article
series Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali
spelling doaj.art-7bd88f60c91f44ab86da120a7425bd082022-12-21T21:18:50ZengAccademia Peloritana dei PericolantiAtti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali0365-03591825-12422014-10-01921A210.1478/AAPP.921A2AAPP.921A2Fast resolution of integer Vandermonde systemsRosa di Salvo0Luigia Puccio1 Dipartimento di Matematica e Informatica, Universita' degli Studi di Messina, Messina, Italy Dipartimento di Matematica e Informatica, Universita' degli Studi di Messina, Messina, Italy The resolution of polynomial interpolation problems with integer coefficients directly involves the open issue of the integer inversion of a general Vandermonde matrix defined over the field Z/pZ, for p prime number. The purpose of this paper is to demonstrate the possibility to invert a Vandermonde matrix with integer mod p coefficients and exactly compute the integer inverse matrix in the ring Mat(Z/pZ) of square matrices over Z/pZ through the new fast algorithm InVanderMOD. The explicit formula derived for the integer inversion of Vandermonde matrices entirely develops inside the field of the integers mod p, with due consideration to the operation of integer division. The inversion procedure InVanderMOD is valid for any prime number p and competitive in terms of computational effort, since its computational cost is less than O(n^3). http://dx.doi.org/10.1478/AAPP.921A2
spellingShingle Rosa di Salvo
Luigia Puccio
Fast resolution of integer Vandermonde systems
Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali
title Fast resolution of integer Vandermonde systems
title_full Fast resolution of integer Vandermonde systems
title_fullStr Fast resolution of integer Vandermonde systems
title_full_unstemmed Fast resolution of integer Vandermonde systems
title_short Fast resolution of integer Vandermonde systems
title_sort fast resolution of integer vandermonde systems
url http://dx.doi.org/10.1478/AAPP.921A2
work_keys_str_mv AT rosadisalvo fastresolutionofintegervandermondesystems
AT luigiapuccio fastresolutionofintegervandermondesystems