The impact of using a proton exchange membrane on alkaline fuel cell performance

A hydrogen fuel cell was designed in the laboratory, operating in potentiostatic mode (1 V, 1.23 V, 1.5 V and 5 V), obtaining characteristic parameters that allow improving hydrogen production by means of electrolysis. For this, a proton exchange membrane, Nafi on 117, was adapted, which was subjec...

Full description

Bibliographic Details
Main Authors: Henry Reyes-Pineda, Ramiro René Londoño-Ramírez, Leidy Carolina Cardona-Hernández
Format: Article
Language:English
Published: Universidad de Antioquia 2015-12-01
Series:Revista Facultad de Ingeniería Universidad de Antioquia
Subjects:
Online Access:https://revistas.udea.edu.co/index.php/ingenieria/article/view/22118
Description
Summary:A hydrogen fuel cell was designed in the laboratory, operating in potentiostatic mode (1 V, 1.23 V, 1.5 V and 5 V), obtaining characteristic parameters that allow improving hydrogen production by means of electrolysis. For this, a proton exchange membrane, Nafi on 117, was adapted, which was subjected to an activation pretreatment, allowing us to compare its performance and function. Values for current density, degree of conversion, mass transfer coeffi cient and hydrogen fl ow generated in an instant (t) were obtained.
ISSN:0120-6230
2422-2844