Chiellini Hamiltonian Lienard differential systems
We characterize the centers of the Chiellini Hamiltonian Lienard second-order differential equations $x'=y$, $y'=-f(x) y -g(x)$ where $g(x)=f(x) (k - \alpha (1 +\alpha) \int f(x) dx )$ with $\alpha, k \in \mathbb{R}$. Moreover we study the phase portraits in the Poincare disk of these...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2019-05-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2019/71/abstr.html |
Summary: | We characterize the centers of the Chiellini Hamiltonian Lienard
second-order differential equations $x'=y$, $y'=-f(x) y -g(x)$ where
$g(x)=f(x) (k - \alpha (1 +\alpha) \int f(x) dx )$ with
$\alpha, k \in \mathbb{R}$. Moreover we study the phase portraits
in the Poincare disk of these systems when $f(x)$ is linear. |
---|---|
ISSN: | 1072-6691 |