Chiellini Hamiltonian Lienard differential systems

We characterize the centers of the Chiellini Hamiltonian Lienard second-order differential equations $x'=y$, $y'=-f(x) y -g(x)$ where $g(x)=f(x) (k - \alpha (1 +\alpha) \int f(x) dx )$ with $\alpha, k \in \mathbb{R}$. Moreover we study the phase portraits in the Poincare disk of these...

Full description

Bibliographic Details
Main Authors: Jaume Gine, Jaume Llibre, Claudia Valls
Format: Article
Language:English
Published: Texas State University 2019-05-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2019/71/abstr.html
Description
Summary:We characterize the centers of the Chiellini Hamiltonian Lienard second-order differential equations $x'=y$, $y'=-f(x) y -g(x)$ where $g(x)=f(x) (k - \alpha (1 +\alpha) \int f(x) dx )$ with $\alpha, k \in \mathbb{R}$. Moreover we study the phase portraits in the Poincare disk of these systems when $f(x)$ is linear.
ISSN:1072-6691