Chiellini Hamiltonian Lienard differential systems

We characterize the centers of the Chiellini Hamiltonian Lienard second-order differential equations $x'=y$, $y'=-f(x) y -g(x)$ where $g(x)=f(x) (k - \alpha (1 +\alpha) \int f(x) dx )$ with $\alpha, k \in \mathbb{R}$. Moreover we study the phase portraits in the Poincare disk of these...

Full description

Bibliographic Details
Main Authors: Jaume Gine, Jaume Llibre, Claudia Valls
Format: Article
Language:English
Published: Texas State University 2019-05-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2019/71/abstr.html
_version_ 1828334316301582336
author Jaume Gine
Jaume Llibre
Claudia Valls
author_facet Jaume Gine
Jaume Llibre
Claudia Valls
author_sort Jaume Gine
collection DOAJ
description We characterize the centers of the Chiellini Hamiltonian Lienard second-order differential equations $x'=y$, $y'=-f(x) y -g(x)$ where $g(x)=f(x) (k - \alpha (1 +\alpha) \int f(x) dx )$ with $\alpha, k \in \mathbb{R}$. Moreover we study the phase portraits in the Poincare disk of these systems when $f(x)$ is linear.
first_indexed 2024-04-13T21:31:41Z
format Article
id doaj.art-7be6b027557648ad9461f7763f200dee
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-13T21:31:41Z
publishDate 2019-05-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-7be6b027557648ad9461f7763f200dee2022-12-22T02:29:08ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912019-05-01201971,18Chiellini Hamiltonian Lienard differential systemsJaume Gine0Jaume Llibre1Claudia Valls2 Univ. de Lleida, Lleida, Catalonia, Spain Univ. Autonoma de Barcelona, Catalonia, Spain Instituto Superior Tecnico, Lisboa, Portugal We characterize the centers of the Chiellini Hamiltonian Lienard second-order differential equations $x'=y$, $y'=-f(x) y -g(x)$ where $g(x)=f(x) (k - \alpha (1 +\alpha) \int f(x) dx )$ with $\alpha, k \in \mathbb{R}$. Moreover we study the phase portraits in the Poincare disk of these systems when $f(x)$ is linear.http://ejde.math.txstate.edu/Volumes/2019/71/abstr.htmlLienard systemcenter-focus problemfirst integrals
spellingShingle Jaume Gine
Jaume Llibre
Claudia Valls
Chiellini Hamiltonian Lienard differential systems
Electronic Journal of Differential Equations
Lienard system
center-focus problem
first integrals
title Chiellini Hamiltonian Lienard differential systems
title_full Chiellini Hamiltonian Lienard differential systems
title_fullStr Chiellini Hamiltonian Lienard differential systems
title_full_unstemmed Chiellini Hamiltonian Lienard differential systems
title_short Chiellini Hamiltonian Lienard differential systems
title_sort chiellini hamiltonian lienard differential systems
topic Lienard system
center-focus problem
first integrals
url http://ejde.math.txstate.edu/Volumes/2019/71/abstr.html
work_keys_str_mv AT jaumegine chiellinihamiltonianlienarddifferentialsystems
AT jaumellibre chiellinihamiltonianlienarddifferentialsystems
AT claudiavalls chiellinihamiltonianlienarddifferentialsystems