Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups
Let <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> be an epireflective subcategory of the category of all semitopological groups that consists only of abelia...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-07-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/8/3/85 |
_version_ | 1819132204470501376 |
---|---|
author | Veronika Pitrová |
author_facet | Veronika Pitrová |
author_sort | Veronika Pitrová |
collection | DOAJ |
description | Let <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> be an epireflective subcategory of the category of all semitopological groups that consists only of abelian groups. We describe maximal hereditary coreflective subcategories of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> that are not bicoreflective in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> in the case that the <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula>-reflection of the discrete group of integers is a finite cyclic group, the group of integers with a topology that is not <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula>, or the group of integers with the topology generated by its subgroups of the form <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="〈" close="〉"> <msup> <mi>p</mi> <mi>n</mi> </msup> </mfenced> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>∈</mo> <mi>P</mi> </mrow> </semantics> </math> </inline-formula> and <i>P</i> is a given set of prime numbers. |
first_indexed | 2024-12-22T09:27:41Z |
format | Article |
id | doaj.art-7beb1e7b60fa4dd6bf0b4c8167f084cd |
institution | Directory Open Access Journal |
issn | 2075-1680 |
language | English |
last_indexed | 2024-12-22T09:27:41Z |
publishDate | 2019-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Axioms |
spelling | doaj.art-7beb1e7b60fa4dd6bf0b4c8167f084cd2022-12-21T18:31:03ZengMDPI AGAxioms2075-16802019-07-01838510.3390/axioms8030085axioms8030085Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological GroupsVeronika Pitrová0Department of Mathematics, Faculty of Science, Jan Evangelista Purkyně University, České mládeže 8, 400 96 Ústí nad Labem, Czech RepublicLet <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> be an epireflective subcategory of the category of all semitopological groups that consists only of abelian groups. We describe maximal hereditary coreflective subcategories of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> that are not bicoreflective in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> in the case that the <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula>-reflection of the discrete group of integers is a finite cyclic group, the group of integers with a topology that is not <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula>, or the group of integers with the topology generated by its subgroups of the form <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="〈" close="〉"> <msup> <mi>p</mi> <mi>n</mi> </msup> </mfenced> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>∈</mo> <mi>P</mi> </mrow> </semantics> </math> </inline-formula> and <i>P</i> is a given set of prime numbers.https://www.mdpi.com/2075-1680/8/3/85semitopological groupabelian groupcoreflective subcategoryhereditary subcategory |
spellingShingle | Veronika Pitrová Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups Axioms semitopological group abelian group coreflective subcategory hereditary subcategory |
title | Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups |
title_full | Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups |
title_fullStr | Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups |
title_full_unstemmed | Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups |
title_short | Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups |
title_sort | hereditary coreflective subcategories in certain categories of abelian semitopological groups |
topic | semitopological group abelian group coreflective subcategory hereditary subcategory |
url | https://www.mdpi.com/2075-1680/8/3/85 |
work_keys_str_mv | AT veronikapitrova hereditarycoreflectivesubcategoriesincertaincategoriesofabeliansemitopologicalgroups |