Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups

Let <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> be an epireflective subcategory of the category of all semitopological groups that consists only of abelia...

Full description

Bibliographic Details
Main Author: Veronika Pitrová
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/8/3/85
_version_ 1819132204470501376
author Veronika Pitrová
author_facet Veronika Pitrová
author_sort Veronika Pitrová
collection DOAJ
description Let <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> be an epireflective subcategory of the category of all semitopological groups that consists only of abelian groups. We describe maximal hereditary coreflective subcategories of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> that are not bicoreflective in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> in the case that the <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula>-reflection of the discrete group of integers is a finite cyclic group, the group of integers with a topology that is not <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula>, or the group of integers with the topology generated by its subgroups of the form <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="&#9001;" close="&#9002;"> <msup> <mi>p</mi> <mi>n</mi> </msup> </mfenced> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>&#8712;</mo> <mi mathvariant="double-struck">N</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&#8712;</mo> <mi>P</mi> </mrow> </semantics> </math> </inline-formula> and <i>P</i> is a given set of prime numbers.
first_indexed 2024-12-22T09:27:41Z
format Article
id doaj.art-7beb1e7b60fa4dd6bf0b4c8167f084cd
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-12-22T09:27:41Z
publishDate 2019-07-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-7beb1e7b60fa4dd6bf0b4c8167f084cd2022-12-21T18:31:03ZengMDPI AGAxioms2075-16802019-07-01838510.3390/axioms8030085axioms8030085Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological GroupsVeronika Pitrová0Department of Mathematics, Faculty of Science, Jan Evangelista Purkyně University, České mládeže 8, 400 96 Ústí nad Labem, Czech RepublicLet <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> be an epireflective subcategory of the category of all semitopological groups that consists only of abelian groups. We describe maximal hereditary coreflective subcategories of <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> that are not bicoreflective in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula> in the case that the <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">A</mi> </semantics> </math> </inline-formula>-reflection of the discrete group of integers is a finite cyclic group, the group of integers with a topology that is not <inline-formula> <math display="inline"> <semantics> <msub> <mi>T</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula>, or the group of integers with the topology generated by its subgroups of the form <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="&#9001;" close="&#9002;"> <msup> <mi>p</mi> <mi>n</mi> </msup> </mfenced> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>&#8712;</mo> <mi mathvariant="double-struck">N</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&#8712;</mo> <mi>P</mi> </mrow> </semantics> </math> </inline-formula> and <i>P</i> is a given set of prime numbers.https://www.mdpi.com/2075-1680/8/3/85semitopological groupabelian groupcoreflective subcategoryhereditary subcategory
spellingShingle Veronika Pitrová
Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups
Axioms
semitopological group
abelian group
coreflective subcategory
hereditary subcategory
title Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups
title_full Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups
title_fullStr Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups
title_full_unstemmed Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups
title_short Hereditary Coreflective Subcategories in Certain Categories of Abelian Semitopological Groups
title_sort hereditary coreflective subcategories in certain categories of abelian semitopological groups
topic semitopological group
abelian group
coreflective subcategory
hereditary subcategory
url https://www.mdpi.com/2075-1680/8/3/85
work_keys_str_mv AT veronikapitrova hereditarycoreflectivesubcategoriesincertaincategoriesofabeliansemitopologicalgroups