Interpolation of compact non-linear operators

<p/> <p>Let <inline-formula><graphic file="1029-242X-2000-862170-i1.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2000-862170-i2.gif"/></inline-formula> be two Banach couples and let <inline-formula><...

Full description

Bibliographic Details
Main Author: Bento AJG
Format: Article
Language:English
Published: SpringerOpen 2000-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/5/862170
_version_ 1828783744530513920
author Bento AJG
author_facet Bento AJG
author_sort Bento AJG
collection DOAJ
description <p/> <p>Let <inline-formula><graphic file="1029-242X-2000-862170-i1.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2000-862170-i2.gif"/></inline-formula> be two Banach couples and let <inline-formula><graphic file="1029-242X-2000-862170-i3.gif"/></inline-formula> be a continuous map such that <inline-formula><graphic file="1029-242X-2000-862170-i4.gif"/></inline-formula> is a Lipschitz compact operator and <inline-formula><graphic file="1029-242X-2000-862170-i5.gif"/></inline-formula> is a Lipschitz operator. We prove that if <inline-formula><graphic file="1029-242X-2000-862170-i6.gif"/></inline-formula> is also compact or <inline-formula><graphic file="1029-242X-2000-862170-i7.gif"/></inline-formula> is continuously embedded in <inline-formula><graphic file="1029-242X-2000-862170-i8.gif"/></inline-formula> or <inline-formula><graphic file="1029-242X-2000-862170-i9.gif"/></inline-formula> is continuously embedded in <inline-formula><graphic file="1029-242X-2000-862170-i10.gif"/></inline-formula>, then <inline-formula><graphic file="1029-242X-2000-862170-i11.gif"/></inline-formula> is also a compact operator when <inline-formula><graphic file="1029-242X-2000-862170-i12.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2000-862170-i13.gif"/></inline-formula>. We also investigate the behaviour of the measure of non-compactness under real interpolation and obtain best possible compactness results of Lions&#8211;Peetre type for non-linear operators. A two-sided compactness result for linear operators is also obtained for an arbitrary interpolation method when an approximation hypothesis on the Banach couple <inline-formula><graphic file="1029-242X-2000-862170-i14.gif"/></inline-formula> is imposed.</p>
first_indexed 2024-12-11T23:18:38Z
format Article
id doaj.art-7bfc5bf4a62b4985ac9a6871f26ef48d
institution Directory Open Access Journal
issn 1025-5834
1029-242X
language English
last_indexed 2024-12-11T23:18:38Z
publishDate 2000-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-7bfc5bf4a62b4985ac9a6871f26ef48d2022-12-22T00:46:26ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2000-01-0120003862170Interpolation of compact non-linear operatorsBento AJG<p/> <p>Let <inline-formula><graphic file="1029-242X-2000-862170-i1.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2000-862170-i2.gif"/></inline-formula> be two Banach couples and let <inline-formula><graphic file="1029-242X-2000-862170-i3.gif"/></inline-formula> be a continuous map such that <inline-formula><graphic file="1029-242X-2000-862170-i4.gif"/></inline-formula> is a Lipschitz compact operator and <inline-formula><graphic file="1029-242X-2000-862170-i5.gif"/></inline-formula> is a Lipschitz operator. We prove that if <inline-formula><graphic file="1029-242X-2000-862170-i6.gif"/></inline-formula> is also compact or <inline-formula><graphic file="1029-242X-2000-862170-i7.gif"/></inline-formula> is continuously embedded in <inline-formula><graphic file="1029-242X-2000-862170-i8.gif"/></inline-formula> or <inline-formula><graphic file="1029-242X-2000-862170-i9.gif"/></inline-formula> is continuously embedded in <inline-formula><graphic file="1029-242X-2000-862170-i10.gif"/></inline-formula>, then <inline-formula><graphic file="1029-242X-2000-862170-i11.gif"/></inline-formula> is also a compact operator when <inline-formula><graphic file="1029-242X-2000-862170-i12.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2000-862170-i13.gif"/></inline-formula>. We also investigate the behaviour of the measure of non-compactness under real interpolation and obtain best possible compactness results of Lions&#8211;Peetre type for non-linear operators. A two-sided compactness result for linear operators is also obtained for an arbitrary interpolation method when an approximation hypothesis on the Banach couple <inline-formula><graphic file="1029-242X-2000-862170-i14.gif"/></inline-formula> is imposed.</p>http://www.journalofinequalitiesandapplications.com/content/5/862170InterpolationCompact non-linear operatorsMeasure of non-compactness
spellingShingle Bento AJG
Interpolation of compact non-linear operators
Journal of Inequalities and Applications
Interpolation
Compact non-linear operators
Measure of non-compactness
title Interpolation of compact non-linear operators
title_full Interpolation of compact non-linear operators
title_fullStr Interpolation of compact non-linear operators
title_full_unstemmed Interpolation of compact non-linear operators
title_short Interpolation of compact non-linear operators
title_sort interpolation of compact non linear operators
topic Interpolation
Compact non-linear operators
Measure of non-compactness
url http://www.journalofinequalitiesandapplications.com/content/5/862170
work_keys_str_mv AT bentoajg interpolationofcompactnonlinearoperators