Eigenloss: Combined PCA-Based Loss Function for Polyp Segmentation

Colorectal cancer is one of the leading cancer death causes worldwide, but its early diagnosis highly improves the survival rates. The success of deep learning has also benefited this clinical field. When training a deep learning model, it is optimized based on the selected loss function. In this wo...

Full description

Bibliographic Details
Main Authors: Luisa F. Sánchez-Peralta, Artzai Picón, Juan Antonio Antequera-Barroso, Juan Francisco Ortega-Morán, Francisco M. Sánchez-Margallo, J. Blas Pagador
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/8/1316
_version_ 1797559624439693312
author Luisa F. Sánchez-Peralta
Artzai Picón
Juan Antonio Antequera-Barroso
Juan Francisco Ortega-Morán
Francisco M. Sánchez-Margallo
J. Blas Pagador
author_facet Luisa F. Sánchez-Peralta
Artzai Picón
Juan Antonio Antequera-Barroso
Juan Francisco Ortega-Morán
Francisco M. Sánchez-Margallo
J. Blas Pagador
author_sort Luisa F. Sánchez-Peralta
collection DOAJ
description Colorectal cancer is one of the leading cancer death causes worldwide, but its early diagnosis highly improves the survival rates. The success of deep learning has also benefited this clinical field. When training a deep learning model, it is optimized based on the selected loss function. In this work, we consider two networks (U-Net and LinkNet) and two backbones (VGG-16 and Densnet121). We analyzed the influence of seven loss functions and used a principal component analysis (PCA) to determine whether the PCA-based decomposition allows for the defining of the coefficients of a non-redundant primal loss function that can outperform the individual loss functions and different linear combinations. The eigenloss is defined as a linear combination of the individual losses using the elements of the eigenvector as coefficients. Empirical results show that the proposed eigenloss improves the general performance of individual loss functions and outperforms other linear combinations when Linknet is used, showing potential for its application in polyp segmentation problems.
first_indexed 2024-03-10T17:47:57Z
format Article
id doaj.art-7c08f93cb7af41a3b2c9e6b104bdd341
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T17:47:57Z
publishDate 2020-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-7c08f93cb7af41a3b2c9e6b104bdd3412023-11-20T09:27:46ZengMDPI AGMathematics2227-73902020-08-0188131610.3390/math8081316Eigenloss: Combined PCA-Based Loss Function for Polyp SegmentationLuisa F. Sánchez-Peralta0Artzai Picón1Juan Antonio Antequera-Barroso2Juan Francisco Ortega-Morán3Francisco M. Sánchez-Margallo4J. Blas Pagador5Jesús Usón Minimally Invasive Surgery Centre, N-521, km 41.7, E-10071 Cáceres, SpainTECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, C/Geldo. Edificio 700, E-48160 Derio, SpainDidactics of Mathematics, University of Cadiz, Avda. República Saharaui s/n. Campus de Puerto Real, E-11519 Puerto Real, SpainJesús Usón Minimally Invasive Surgery Centre, N-521, km 41.7, E-10071 Cáceres, SpainJesús Usón Minimally Invasive Surgery Centre, N-521, km 41.7, E-10071 Cáceres, SpainJesús Usón Minimally Invasive Surgery Centre, N-521, km 41.7, E-10071 Cáceres, SpainColorectal cancer is one of the leading cancer death causes worldwide, but its early diagnosis highly improves the survival rates. The success of deep learning has also benefited this clinical field. When training a deep learning model, it is optimized based on the selected loss function. In this work, we consider two networks (U-Net and LinkNet) and two backbones (VGG-16 and Densnet121). We analyzed the influence of seven loss functions and used a principal component analysis (PCA) to determine whether the PCA-based decomposition allows for the defining of the coefficients of a non-redundant primal loss function that can outperform the individual loss functions and different linear combinations. The eigenloss is defined as a linear combination of the individual losses using the elements of the eigenvector as coefficients. Empirical results show that the proposed eigenloss improves the general performance of individual loss functions and outperforms other linear combinations when Linknet is used, showing potential for its application in polyp segmentation problems.https://www.mdpi.com/2227-7390/8/8/1316deep learningloss functionsprincipal component analysispolyp segmentation
spellingShingle Luisa F. Sánchez-Peralta
Artzai Picón
Juan Antonio Antequera-Barroso
Juan Francisco Ortega-Morán
Francisco M. Sánchez-Margallo
J. Blas Pagador
Eigenloss: Combined PCA-Based Loss Function for Polyp Segmentation
Mathematics
deep learning
loss functions
principal component analysis
polyp segmentation
title Eigenloss: Combined PCA-Based Loss Function for Polyp Segmentation
title_full Eigenloss: Combined PCA-Based Loss Function for Polyp Segmentation
title_fullStr Eigenloss: Combined PCA-Based Loss Function for Polyp Segmentation
title_full_unstemmed Eigenloss: Combined PCA-Based Loss Function for Polyp Segmentation
title_short Eigenloss: Combined PCA-Based Loss Function for Polyp Segmentation
title_sort eigenloss combined pca based loss function for polyp segmentation
topic deep learning
loss functions
principal component analysis
polyp segmentation
url https://www.mdpi.com/2227-7390/8/8/1316
work_keys_str_mv AT luisafsanchezperalta eigenlosscombinedpcabasedlossfunctionforpolypsegmentation
AT artzaipicon eigenlosscombinedpcabasedlossfunctionforpolypsegmentation
AT juanantonioantequerabarroso eigenlosscombinedpcabasedlossfunctionforpolypsegmentation
AT juanfranciscoortegamoran eigenlosscombinedpcabasedlossfunctionforpolypsegmentation
AT franciscomsanchezmargallo eigenlosscombinedpcabasedlossfunctionforpolypsegmentation
AT jblaspagador eigenlosscombinedpcabasedlossfunctionforpolypsegmentation