Histogram Filter with Smoothing Parameter Setting

A histogram filter with smoothing parameter settings is discussed in the article. The histogram filter can be effectively applied in the problems of identification (recognition) of distribution laws for small amounts of data. The smoothing parameter is determined taking into account the available a...

Full description

Bibliographic Details
Main Authors: A. V. Ausiannikau, V. M. Kozel
Format: Article
Language:Russian
Published: Educational institution «Belarusian State University of Informatics and Radioelectronics» 2023-01-01
Series:Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki
Subjects:
Online Access:https://doklady.bsuir.by/jour/article/view/3522
_version_ 1826547361368768512
author A. V. Ausiannikau
V. M. Kozel
author_facet A. V. Ausiannikau
V. M. Kozel
author_sort A. V. Ausiannikau
collection DOAJ
description A histogram filter with smoothing parameter settings is discussed in the article. The histogram filter can be effectively applied in the problems of identification (recognition) of distribution laws for small amounts of data. The smoothing parameter is determined taking into account the available a priori information regarding the proposed distribution law. The relationship between the mathematical expectations of the chi-square fit criterion of the standard estimation histogram and the use of the histogram filter has been determined. This ratio is determined by the smoothing factor. The numerical value of the smoothing coefficient depends on the following parameters: the amount of data, the number of grouping intervals, and the shape parameters of the distribution law. The paper analyzes the feasibility of using a histogram filter, depending on the ratio of the above parameters. The dependence of the smoothing coefficient on the specified parameters allows one to determine the relationship between the number of data grouping intervals and their volume. The histogram filter is an easy-to-implement tool that can be easily integrated into any open distribution law identification (recognition) algorithm
first_indexed 2024-04-10T03:11:16Z
format Article
id doaj.art-7c0b1105ab704609b6c5a0521df22f4a
institution Directory Open Access Journal
issn 1729-7648
language Russian
last_indexed 2025-03-14T05:48:26Z
publishDate 2023-01-01
publisher Educational institution «Belarusian State University of Informatics and Radioelectronics»
record_format Article
series Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki
spelling doaj.art-7c0b1105ab704609b6c5a0521df22f4a2025-03-05T12:43:12ZrusEducational institution «Belarusian State University of Informatics and Radioelectronics»Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki1729-76482023-01-01208425010.35596/1729-7648-2022-20-8-42-501861Histogram Filter with Smoothing Parameter SettingA. V. Ausiannikau0V. M. Kozel1Belarusian State UniversityBelarusian State University of Informatics and RadioelectronicsA histogram filter with smoothing parameter settings is discussed in the article. The histogram filter can be effectively applied in the problems of identification (recognition) of distribution laws for small amounts of data. The smoothing parameter is determined taking into account the available a priori information regarding the proposed distribution law. The relationship between the mathematical expectations of the chi-square fit criterion of the standard estimation histogram and the use of the histogram filter has been determined. This ratio is determined by the smoothing factor. The numerical value of the smoothing coefficient depends on the following parameters: the amount of data, the number of grouping intervals, and the shape parameters of the distribution law. The paper analyzes the feasibility of using a histogram filter, depending on the ratio of the above parameters. The dependence of the smoothing coefficient on the specified parameters allows one to determine the relationship between the number of data grouping intervals and their volume. The histogram filter is an easy-to-implement tool that can be easily integrated into any open distribution law identification (recognition) algorithmhttps://doklady.bsuir.by/jour/article/view/3522histogram filteridentificationsmoothing coefficientdata volumegrouping intervalprobability density distribution
spellingShingle A. V. Ausiannikau
V. M. Kozel
Histogram Filter with Smoothing Parameter Setting
Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki
histogram filter
identification
smoothing coefficient
data volume
grouping interval
probability density distribution
title Histogram Filter with Smoothing Parameter Setting
title_full Histogram Filter with Smoothing Parameter Setting
title_fullStr Histogram Filter with Smoothing Parameter Setting
title_full_unstemmed Histogram Filter with Smoothing Parameter Setting
title_short Histogram Filter with Smoothing Parameter Setting
title_sort histogram filter with smoothing parameter setting
topic histogram filter
identification
smoothing coefficient
data volume
grouping interval
probability density distribution
url https://doklady.bsuir.by/jour/article/view/3522
work_keys_str_mv AT avausiannikau histogramfilterwithsmoothingparametersetting
AT vmkozel histogramfilterwithsmoothingparametersetting