The existence of sign-changing solution for a class of quasilinear Schrödinger–Poisson systems via perturbation method

Abstract This paper is concerned with the existence of a sign-changing solution to a class of quasilinear Schrödinger–Poisson systems. There are some technical difficulties in applying variational methods directly to the problem because the quasilinear term makes it impossible to find a suitable spa...

Full description

Bibliographic Details
Main Authors: Lizhen Chen, Xiaojing Feng, Xinan Hao
Format: Article
Language:English
Published: SpringerOpen 2019-10-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-019-1272-3
Description
Summary:Abstract This paper is concerned with the existence of a sign-changing solution to a class of quasilinear Schrödinger–Poisson systems. There are some technical difficulties in applying variational methods directly to the problem because the quasilinear term makes it impossible to find a suitable space in which the corresponding functional possesses both smoothness and compactness properties. In order to overcome the difficulties caused by nonlocal term and quasi-linear term, we shall apply the perturbation method by adding a 4-Laplacian operator to consider the perturbation problem. And then, by using the approximation technique, a sign-changing solution with precisely two nodal domains is derived.
ISSN:1687-2770