Crowdsourced privacy-preserved feature tagging of short home videos for machine learning ASD detection
Abstract Standard medical diagnosis of mental health conditions requires licensed experts who are increasingly outnumbered by those at risk, limiting reach. We test the hypothesis that a trustworthy crowd of non-experts can efficiently annotate behavioral features needed for accurate machine learnin...
Hauptverfasser: | Peter Washington, Qandeel Tariq, Emilie Leblanc, Brianna Chrisman, Kaitlyn Dunlap, Aaron Kline, Haik Kalantarian, Yordan Penev, Kelley Paskov, Catalin Voss, Nathaniel Stockham, Maya Varma, Arman Husic, Jack Kent, Nick Haber, Terry Winograd, Dennis P. Wall |
---|---|
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Nature Portfolio
2021-04-01
|
Schriftenreihe: | Scientific Reports |
Online Zugang: | https://doi.org/10.1038/s41598-021-87059-4 |
Ähnliche Einträge
Ähnliche Einträge
-
Addendum to the Acknowledgements: Validity of Online Screening for Autism: Crowdsourcing Study Comparing Paid and Unpaid Diagnostic Tasks
von: Washington, Peter, et al.
Veröffentlicht: (2019-06-01) -
Improved Digital Therapy for Developmental Pediatrics Using Domain-Specific Artificial Intelligence: Machine Learning Study
von: Peter Washington, et al.
Veröffentlicht: (2022-04-01) -
Classifying Autism From Crowdsourced Semistructured Speech Recordings: Machine Learning Model Comparison Study
von: Nathan A Chi, et al.
Veröffentlicht: (2022-04-01) -
Identification of Social Engagement Indicators Associated With Autism Spectrum Disorder Using a Game-Based Mobile App: Comparative Study of Gaze Fixation and Visual Scanning Methods
von: Maya Varma, et al.
Veröffentlicht: (2022-02-01) -
The Classification of Abnormal Hand Movement to Aid in Autism Detection: Machine Learning Study
von: Anish Lakkapragada, et al.
Veröffentlicht: (2022-06-01)