Periodic solutions for neutral functional differential equations with impulses on time scales

Let $mathbb{T}$ be a periodic time scale. We use Krasnoselskii's fixed point theorem to show that the neutral functional differential equation with impulses $$displaylines{ x^{Delta}(t)=-A(t)x^sigma(t)+g^Delta(t,x(t-h(t)))+f(t,x(t),x(t-h(t))),quad teq t_j,;tinmathbb{T},cr x(t_j^+)= x(t_j^...

Full description

Bibliographic Details
Main Authors: Yongkun Li, Xiaoyan Dou, Jianwen Zhou
Format: Article
Language:English
Published: Texas State University 2012-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2012/57/abstr.html
Description
Summary:Let $mathbb{T}$ be a periodic time scale. We use Krasnoselskii's fixed point theorem to show that the neutral functional differential equation with impulses $$displaylines{ x^{Delta}(t)=-A(t)x^sigma(t)+g^Delta(t,x(t-h(t)))+f(t,x(t),x(t-h(t))),quad teq t_j,;tinmathbb{T},cr x(t_j^+)= x(t_j^-)+I_j(x(t_j)), quad jin mathbb{Z}^+ }$$ has a periodic solution. Under a slightly more stringent conditions we show that the periodic solution is unique using the contraction mapping principle.
ISSN:1072-6691