Periodic solutions for neutral functional differential equations with impulses on time scales

Let $mathbb{T}$ be a periodic time scale. We use Krasnoselskii's fixed point theorem to show that the neutral functional differential equation with impulses $$displaylines{ x^{Delta}(t)=-A(t)x^sigma(t)+g^Delta(t,x(t-h(t)))+f(t,x(t),x(t-h(t))),quad teq t_j,;tinmathbb{T},cr x(t_j^+)= x(t_j^...

Full description

Bibliographic Details
Main Authors: Yongkun Li, Xiaoyan Dou, Jianwen Zhou
Format: Article
Language:English
Published: Texas State University 2012-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2012/57/abstr.html
_version_ 1818139626332749824
author Yongkun Li
Xiaoyan Dou
Jianwen Zhou
author_facet Yongkun Li
Xiaoyan Dou
Jianwen Zhou
author_sort Yongkun Li
collection DOAJ
description Let $mathbb{T}$ be a periodic time scale. We use Krasnoselskii's fixed point theorem to show that the neutral functional differential equation with impulses $$displaylines{ x^{Delta}(t)=-A(t)x^sigma(t)+g^Delta(t,x(t-h(t)))+f(t,x(t),x(t-h(t))),quad teq t_j,;tinmathbb{T},cr x(t_j^+)= x(t_j^-)+I_j(x(t_j)), quad jin mathbb{Z}^+ }$$ has a periodic solution. Under a slightly more stringent conditions we show that the periodic solution is unique using the contraction mapping principle.
first_indexed 2024-12-11T10:31:05Z
format Article
id doaj.art-7c280dcf1817412997d45b2e46e9bc1b
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-11T10:31:05Z
publishDate 2012-04-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-7c280dcf1817412997d45b2e46e9bc1b2022-12-22T01:10:55ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912012-04-01201257,114Periodic solutions for neutral functional differential equations with impulses on time scalesYongkun LiXiaoyan DouJianwen ZhouLet $mathbb{T}$ be a periodic time scale. We use Krasnoselskii's fixed point theorem to show that the neutral functional differential equation with impulses $$displaylines{ x^{Delta}(t)=-A(t)x^sigma(t)+g^Delta(t,x(t-h(t)))+f(t,x(t),x(t-h(t))),quad teq t_j,;tinmathbb{T},cr x(t_j^+)= x(t_j^-)+I_j(x(t_j)), quad jin mathbb{Z}^+ }$$ has a periodic solution. Under a slightly more stringent conditions we show that the periodic solution is unique using the contraction mapping principle.http://ejde.math.txstate.edu/Volumes/2012/57/abstr.htmlPositive periodic solutionneutral functional differentialequationsimpulsesKrasnoselskii fixed pointtime scales
spellingShingle Yongkun Li
Xiaoyan Dou
Jianwen Zhou
Periodic solutions for neutral functional differential equations with impulses on time scales
Electronic Journal of Differential Equations
Positive periodic solution
neutral functional differential
equations
impulses
Krasnoselskii fixed point
time scales
title Periodic solutions for neutral functional differential equations with impulses on time scales
title_full Periodic solutions for neutral functional differential equations with impulses on time scales
title_fullStr Periodic solutions for neutral functional differential equations with impulses on time scales
title_full_unstemmed Periodic solutions for neutral functional differential equations with impulses on time scales
title_short Periodic solutions for neutral functional differential equations with impulses on time scales
title_sort periodic solutions for neutral functional differential equations with impulses on time scales
topic Positive periodic solution
neutral functional differential
equations
impulses
Krasnoselskii fixed point
time scales
url http://ejde.math.txstate.edu/Volumes/2012/57/abstr.html
work_keys_str_mv AT yongkunli periodicsolutionsforneutralfunctionaldifferentialequationswithimpulsesontimescales
AT xiaoyandou periodicsolutionsforneutralfunctionaldifferentialequationswithimpulsesontimescales
AT jianwenzhou periodicsolutionsforneutralfunctionaldifferentialequationswithimpulsesontimescales