Agrowaste-based Polyhydroxyalkanoate (PHA) production using hydrolytic potential of Bacillus thuringiensis IAM 12077

The study identified the innate enzymatic potential (amylase) of the PHB producing strain B.thuringiensis IAM 12077 and explored the same for cost-effective production of PHB using agrowastes, eliminating the need for pretreatment (acid hydrolysis and/or commercial enzyme). Comparative polyhydroxyal...

Full description

Bibliographic Details
Main Authors: Vaishnavi Gowda, Srividya Shivakumar
Format: Article
Language:English
Published: Instituto de Tecnologia do Paraná (Tecpar) 2014-02-01
Series:Brazilian Archives of Biology and Technology
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132014000100009&lng=en&tlng=en
Description
Summary:The study identified the innate enzymatic potential (amylase) of the PHB producing strain B.thuringiensis IAM 12077 and explored the same for cost-effective production of PHB using agrowastes, eliminating the need for pretreatment (acid hydrolysis and/or commercial enzyme). Comparative polyhydroxyalkanoate (PHA) production by B. thuringiensis IAM 12077 in biphasic growth conditions using glucose and starch showed appreciable levels of growth (5.7 and 6.8 g/L) and PHA production (58.5 and 41.5%) with a PHA yield of 3.3 and 2.8 g/L, respectively. Nitrogen deficiency supported maximum PHA yield (2.46 g/L) and accumulation (53.3%). Maximum growth (3.6 g/L), PHB yield (2.6 g/L) and PHA accumulation (72.8%) was obtained with C:N ratio of 8:1 using starch as the carbon source (10 g/L). Nine substrates (agro and food wastes) viz. rice husk, wheat bran, ragi husk, jowar husk, jackfruit seed powder, mango peel, potato peel, bagasse and straw were subjected to two treatments- acid hydrolysis and hydrolysis by innate enzymes, and the reducing sugars released thereby were utilized for polymer production. All the substrates tested supported comparable PHB production with acid hydrolysis (0.96 g/L-8.03 g/L) and enzyme hydrolysis (0.96 g/L -5.16 g/L). Mango peel yielded the highest PHB (4.03 g/L; 51.3%), followed by jackfruit seed powder (3.93 g/L; 29.32%). Varied levels of amylase activity (0.25U-10U) in all the substrates suggested the enzymatic hydrolysis of agrowastes.
ISSN:1678-4324