A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses

Abstract A large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistic...

Full description

Bibliographic Details
Main Authors: Solomon Gebrechorkos, Julian Leyland, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Daniel R. Parsons, Stephen E. Darby
Format: Article
Language:English
Published: Nature Portfolio 2023-09-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-023-02528-x
_version_ 1797453950765498368
author Solomon Gebrechorkos
Julian Leyland
Louise Slater
Michel Wortmann
Philip J. Ashworth
Georgina L. Bennett
Richard Boothroyd
Hannah Cloke
Pauline Delorme
Helen Griffith
Richard Hardy
Laurence Hawker
Stuart McLelland
Jeffrey Neal
Andrew Nicholas
Andrew J. Tatem
Ellie Vahidi
Daniel R. Parsons
Stephen E. Darby
author_facet Solomon Gebrechorkos
Julian Leyland
Louise Slater
Michel Wortmann
Philip J. Ashworth
Georgina L. Bennett
Richard Boothroyd
Hannah Cloke
Pauline Delorme
Helen Griffith
Richard Hardy
Laurence Hawker
Stuart McLelland
Jeffrey Neal
Andrew Nicholas
Andrew J. Tatem
Ellie Vahidi
Daniel R. Parsons
Stephen E. Darby
author_sort Solomon Gebrechorkos
collection DOAJ
description Abstract A large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downscaling model capable of replicating extreme events, the Bias Correction Constructed Analogues with Quantile mapping reordering (BCCAQ), to downscale daily precipitation, air-temperature, maximum and minimum temperature, wind speed, air pressure, and relative humidity from 18 GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). BCCAQ is calibrated using high-resolution reference datasets and showed a good performance in removing bias from GCMs and reproducing extreme events. The globally downscaled data are available at the Centre for Environmental Data Analysis ( https://doi.org/10.5285/c107618f1db34801bb88a1e927b82317 ) for the historical (1981–2014) and future (2015–2100) periods at 0.25° resolution and at daily time step across three Shared Socioeconomic Pathways (SSP2-4.5, SSP5-3.4-OS and SSP5-8.5). This new climate dataset will be useful for assessing future changes and variability in climate and for driving high-resolution impact assessment models.
first_indexed 2024-03-09T15:30:17Z
format Article
id doaj.art-7c47bfb518ff4bd7a9df16dc8fa872e0
institution Directory Open Access Journal
issn 2052-4463
language English
last_indexed 2024-03-09T15:30:17Z
publishDate 2023-09-01
publisher Nature Portfolio
record_format Article
series Scientific Data
spelling doaj.art-7c47bfb518ff4bd7a9df16dc8fa872e02023-11-26T12:19:15ZengNature PortfolioScientific Data2052-44632023-09-0110111510.1038/s41597-023-02528-xA high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analysesSolomon Gebrechorkos0Julian Leyland1Louise Slater2Michel Wortmann3Philip J. Ashworth4Georgina L. Bennett5Richard Boothroyd6Hannah Cloke7Pauline Delorme8Helen Griffith9Richard Hardy10Laurence Hawker11Stuart McLelland12Jeffrey Neal13Andrew Nicholas14Andrew J. Tatem15Ellie Vahidi16Daniel R. Parsons17Stephen E. Darby18School of Geography and Environmental Science, University of SouthamptonSchool of Geography and Environmental Science, University of SouthamptonSchool of Geography and the Environment, University of OxfordSchool of Geography and the Environment, University of OxfordSchool of Applied Sciences, University of Brighton, SussexDepartment of Geography, Faculty of Environment, Science and Economy, University of ExeterSchool of Geographical & Earth Sciences, University of GlasgowGeography and Environmental Science, University of ReadingEnergy and Environment Institute, University of HullGeography and Environmental Science, University of ReadingDepartment of Geography, Durham UniversitySchool of Geographical Sciences, University of BristolEnergy and Environment Institute, University of HullSchool of Geographical Sciences, University of BristolDepartment of Geography, Faculty of Environment, Science and Economy, University of ExeterSchool of Geography and Environmental Science, University of SouthamptonDepartment of Geography, Faculty of Environment, Science and Economy, University of ExeterEnergy and Environment Institute, University of HullSchool of Geography and Environmental Science, University of SouthamptonAbstract A large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downscaling model capable of replicating extreme events, the Bias Correction Constructed Analogues with Quantile mapping reordering (BCCAQ), to downscale daily precipitation, air-temperature, maximum and minimum temperature, wind speed, air pressure, and relative humidity from 18 GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). BCCAQ is calibrated using high-resolution reference datasets and showed a good performance in removing bias from GCMs and reproducing extreme events. The globally downscaled data are available at the Centre for Environmental Data Analysis ( https://doi.org/10.5285/c107618f1db34801bb88a1e927b82317 ) for the historical (1981–2014) and future (2015–2100) periods at 0.25° resolution and at daily time step across three Shared Socioeconomic Pathways (SSP2-4.5, SSP5-3.4-OS and SSP5-8.5). This new climate dataset will be useful for assessing future changes and variability in climate and for driving high-resolution impact assessment models.https://doi.org/10.1038/s41597-023-02528-x
spellingShingle Solomon Gebrechorkos
Julian Leyland
Louise Slater
Michel Wortmann
Philip J. Ashworth
Georgina L. Bennett
Richard Boothroyd
Hannah Cloke
Pauline Delorme
Helen Griffith
Richard Hardy
Laurence Hawker
Stuart McLelland
Jeffrey Neal
Andrew Nicholas
Andrew J. Tatem
Ellie Vahidi
Daniel R. Parsons
Stephen E. Darby
A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
Scientific Data
title A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
title_full A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
title_fullStr A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
title_full_unstemmed A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
title_short A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
title_sort high resolution daily global dataset of statistically downscaled cmip6 models for climate impact analyses
url https://doi.org/10.1038/s41597-023-02528-x
work_keys_str_mv AT solomongebrechorkos ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT julianleyland ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT louiseslater ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT michelwortmann ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT philipjashworth ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT georginalbennett ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT richardboothroyd ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT hannahcloke ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT paulinedelorme ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT helengriffith ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT richardhardy ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT laurencehawker ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT stuartmclelland ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT jeffreyneal ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT andrewnicholas ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT andrewjtatem ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT ellievahidi ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT danielrparsons ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT stephenedarby ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT solomongebrechorkos highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT julianleyland highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT louiseslater highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT michelwortmann highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT philipjashworth highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT georginalbennett highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT richardboothroyd highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT hannahcloke highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT paulinedelorme highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT helengriffith highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT richardhardy highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT laurencehawker highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT stuartmclelland highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT jeffreyneal highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT andrewnicholas highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT andrewjtatem highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT ellievahidi highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT danielrparsons highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses
AT stephenedarby highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses