Characteristics of Snow Particle Size Distribution in the PyeongChang Region of South Korea

Snow particle size distribution (PSD) information is important in understanding the microphysics and quantitative precipitation estimation over complex terrain. Measurement and interpretation of the snow PSDs is a topic of active research. This study investigates snow PSDs during 3 year of observati...

Full description

Bibliographic Details
Main Authors: Tiantian Yu, V. Chandrasekar, Hui Xiao, Shashank S. Joshil
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/11/10/1093
Description
Summary:Snow particle size distribution (PSD) information is important in understanding the microphysics and quantitative precipitation estimation over complex terrain. Measurement and interpretation of the snow PSDs is a topic of active research. This study investigates snow PSDs during 3 year of observations from Parsivel<sup>2</sup> disdrometers and precipitation imaging packages (PIP) at five different sites in the PyeongChang region of South Korea. Variabilities in the values of the density of snow (<inline-formula><math display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>), snowfall rate (<inline-formula><math display="inline"><semantics><mi>S</mi></semantics></math></inline-formula>), and ice water content (<inline-formula><math display="inline"><semantics><mrow><mi>I</mi><mi>W</mi><mi>C</mi></mrow></semantics></math></inline-formula>) are studied. To further understand the characteristics of snow PSD at different density and snowfall rate, the snow particle size distribution measurements are divided into six classes based on the density values of snowfall and five classes based on snowfall rates. The mean shape factors (<inline-formula><math display="inline"><semantics><mrow><msub><mi>D</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>l</mi><mi>o</mi><msub><mi>g</mi><mrow><mn>10</mn></mrow></msub><msub><mi>N</mi><mi>w</mi></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>) of normalized gamma distribution are also derived based on different density and snowfall rate classes. The <inline-formula><math display="inline"><semantics><mrow><msub><mi>D</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> decreases and <inline-formula><math display="inline"><semantics><mrow><mi>l</mi><mi>o</mi><msub><mi>g</mi><mrow><mn>10</mn></mrow></msub><msub><mi>N</mi><mi>w</mi></msub></mrow></semantics></math></inline-formula> and <i>μ</i> increase as the density increases. The <inline-formula><math display="inline"><semantics><mrow><msub><mi>D</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mi>l</mi><mi>o</mi><msub><mi>g</mi><mrow><mn>10</mn></mrow></msub><msub><mi>N</mi><mi>w</mi></msub></mrow></semantics></math></inline-formula> increase and <i>μ</i> decreases with the increase of snowfall rate. The power-law relationship between <inline-formula><math display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msub><mi>D</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> is obtained and the relationship between <inline-formula><math display="inline"><semantics><mi>S</mi></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mi>I</mi><mi>W</mi><mi>C</mi></mrow></semantics></math></inline-formula> is also derived.
ISSN:2073-4433