Experimental dataset of nanoporous GaN photoelectrode supported on patterned sapphire substrates for photoelectrochemical water splitting

GaN is one of the most promising materials for high PEC efficiency to produce clean, renewable hydrogen in an ecofriendly manner (Ebaid et al., 2015; Kamimura et al., 2017; Yang et al., 2018; Ohkawa et al., 2013). Trough assays of nanoporous gallium nitride (GaN) photoelectrode, we recently demonstr...

Full description

Bibliographic Details
Main Authors: Dongjing Li, Jianghua Liu, Yang Wang, Aixia Wu, Ruolin Ruan, Zeping Li, Zhimou Xu
Format: Article
Language:English
Published: Elsevier 2019-10-01
Series:Data in Brief
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340919307887
Description
Summary:GaN is one of the most promising materials for high PEC efficiency to produce clean, renewable hydrogen in an ecofriendly manner (Ebaid et al., 2015; Kamimura et al., 2017; Yang et al., 2018; Ohkawa et al., 2013). Trough assays of nanoporous gallium nitride (GaN) photoelectrode, we recently demonstrated an improved PEC efficiency and photocurrent density of nanoporous GaN photoelectrode by 470% times with respect to planar counterpart (Li et al., 2019). Here, we report original data acquired under UV–visible spectrometer, X-ray diffraction (XRD), room temperature PL measurements and PEC measurements, based on the characterization of different sapphire substrate, different GaN samples and different GaN photoelectrodes. The optical properties and photoelectrochemical properties of the corresponding samples and possible mechanisms are presented, which is freely available (Li et al., 2019). The data can be valuable for researchers interested in photoelectrochemical water splitting, as well as to researchers developing fabrication of nanoporous photoelectrode. For more insight please see the research article “A nanoporous GaN photoelectrode on patterned sapphire substrates for high-efficiency photoelectrochemical water splitting”, https://doi.org/10.1016/j.jallcom.2019.06.234. Keywords: Gallium nitride (GaN), Photoelectrode, Patterned sapphire substrate (PSS), Anodic aluminum oxide (AAO), Photoelectrochemical water splitting
ISSN:2352-3409