Improve word embedding using both writing and pronunciation.

Text representation can map text into a vector space for subsequent use in numerical calculations and processing tasks. Word embedding is an important component of text representation. Most existing word embedding models focus on writing and utilize context, weight, dependency, morphology, etc., to...

Full description

Bibliographic Details
Main Authors: Wenhao Zhu, Xin Jin, Jianyue Ni, Baogang Wei, Zhiguo Lu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC6287836?pdf=render
Description
Summary:Text representation can map text into a vector space for subsequent use in numerical calculations and processing tasks. Word embedding is an important component of text representation. Most existing word embedding models focus on writing and utilize context, weight, dependency, morphology, etc., to optimize the training. However, from the linguistic point of view, spoken language is a more direct expression of semantics; writing has meaning only as a recording of spoken language. Therefore, this paper proposes the concept of a pronunciation-enhanced word embedding model (PWE) that integrates speech information into training to fully apply the roles of both speech and writing to meaning. This paper uses the Chinese language, English language and Spanish language as examples and presents several models that integrate word pronunciation characteristics into word embedding. Word similarity and text classification experiments show that the PWE outperforms the baseline model that does not include speech information. Language is a storehouse of sound-images; therefore, the PWE can be applied to most languages.
ISSN:1932-6203