Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches

Thermogravimetric analysis (TGA) is a characterization technique routinely used in materials science. In this particular case, TGA determines the variation of weight with temperature. The thermogravimetric analysis of cellulose acetate (CA) hybrid membranes can provide similar results, despite thei...

Full description

Bibliographic Details
Main Authors: Filipi França dos Santos, Kelly Cristina Da Silveira, Daniela Herdy Carrielo, Gesiane Mendonça Ferreira, Guilherme de Melo Baptista Domingues, Monica Calixto Andrade
Format: Article
Language:English
Published: Universidade Federal do Rio Grande 2023-06-01
Series:Vetor
Subjects:
Online Access:https://periodicos.furg.br/vetor/article/view/15167
Description
Summary:Thermogravimetric analysis (TGA) is a characterization technique routinely used in materials science. In this particular case, TGA determines the variation of weight with temperature. The thermogravimetric analysis of cellulose acetate (CA) hybrid membranes can provide similar results, despite their different chemical composition. The present study uses machine learning algorithms to correlate data from thermogravimetric analyses with variations in chemical composition. Experimental points relating to temperature and weight from these analyses were treated in different ways and used to estimate the composition of the membranes. The Extra-Trees Classifier, Random Forest, Decision Tree, and K-Nearest Neighbors (KNN) algorithms were applied to this data and then evaluated using a confusion and accuracy matrix. The decision tree-based algorithms demonstrated a superior capacity for estimating the composition, albeit with negligible disparities in the thermogravimetric profile. The Extra-Trees Classifier algorithm, in particular, stood out for its ability to estimate composition in all tests, achieving 90% accuracy.
ISSN:0102-7352
2358-3452