Mask Branch Network: Weakly Supervised Branch Network with a Template Mask for Classifying Masses in 3D Automated Breast Ultrasound

Automated breast ultrasound (ABUS) is being rapidly utilized for screening and diagnosing breast cancer. Breast masses, including cancers shown in ABUS scans, often appear as irregular hypoechoic areas that are hard to distinguish from background shadings. We propose a novel <i>branch</i>...

Full description

Bibliographic Details
Main Authors: Daekyung Kim, Haesol Park, Mijung Jang, Kyong-Joon Lee
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/13/6332
Description
Summary:Automated breast ultrasound (ABUS) is being rapidly utilized for screening and diagnosing breast cancer. Breast masses, including cancers shown in ABUS scans, often appear as irregular hypoechoic areas that are hard to distinguish from background shadings. We propose a novel <i>branch</i> network architecture incorporating segmentation information of masses in the training process. The branch network is integrated into neural network, providing the spatial attention effect. The branch network boosts the performance of existing classifiers, helping to learn meaningful features around the target breast mass. For the segmentation information, we leverage the existing radiology reports without additional labeling efforts. The reports, which is generated in medical image reading process, should include the characteristics of breast masses, such as shape and orientation, and a <i>template</i> mask can be created in a rule-based manner. Experimental results show that the proposed branch network with a template mask significantly improves the performance of existing classifiers. We also provide qualitative interpretation of the proposed method by visualizing the attention effect on target objects.
ISSN:2076-3417