Development of a Model to Estimate the Thermodynamic Stability of Organic Substances in Leaching Processes

The leaching processes for metals using organic substances represent a sustainable approach to recover precious minerals from solid matrices. However, the generation of organometallic species and the lack of thermodynamic diagrams make it difficult to advance the understanding of their behavior and...

Full description

Bibliographic Details
Main Authors: Carlos Ocampo-López, Álvaro Ospina-Sanjuan, Margarita Ramírez-Carmona, Leidy Rendón-Castrillón
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/12/9/1424
_version_ 1797484812193234944
author Carlos Ocampo-López
Álvaro Ospina-Sanjuan
Margarita Ramírez-Carmona
Leidy Rendón-Castrillón
author_facet Carlos Ocampo-López
Álvaro Ospina-Sanjuan
Margarita Ramírez-Carmona
Leidy Rendón-Castrillón
author_sort Carlos Ocampo-López
collection DOAJ
description The leaching processes for metals using organic substances represent a sustainable approach to recover precious minerals from solid matrices. However, the generation of organometallic species and the lack of thermodynamic diagrams make it difficult to advance the understanding of their behavior and optimize the process. In this work, a thermodynamically and stoichiometrically consistent mathematical model was developed to estimate the thermodynamic stability of organic substances during the leaching process, and iron leaching with oxalic acid was used as a case study. The Pourbaix and the global thermodynamic stability diagrams for the system were developed in this study. Using a Gaussian<sup>®</sup>, it was estimated that the Gibbs free energy formation for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Fe</mi><msubsup><mrow><mrow><mo>(</mo><mrow><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>4</mn></msub></mrow><mo>)</mo></mrow></mrow><mn>2</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Fe</mi><msubsup><mrow><mrow><mo>(</mo><mrow><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>4</mn></msub></mrow><mo>)</mo></mrow></mrow><mn>2</mn><mrow><mn>1</mn><mo>−</mo></mrow></msubsup><mo>,</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Fe</mi><msubsup><mrow><mrow><mo>(</mo><mrow><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>4</mn></msub></mrow><mo>)</mo></mrow></mrow><mn>3</mn><mrow><mn>3</mn><mo>−</mo></mrow></msubsup></mrow></semantics></math></inline-formula> was −1407.51, −2308.38, and −3068.89 kcal/mol. A set of eleven independent reactions was formulated for the sixteen species involved in the leaching process, and its stability functions in terms of E<sub>h</sub> and pH were calculated to generate a 3D global thermodynamic stability diagram. According to the E<sub>h</sub>-pH diagrams for the leaching process, ferrioxalate was identified as the most stable and predominant species in the leaching process at pH above 6.6 under reductive conditions. The mathematical model developed in this work resulted in a thermodynamic tool for predicting leaching processes.
first_indexed 2024-03-09T23:10:48Z
format Article
id doaj.art-7cc24d9a517649598755ba458b21065c
institution Directory Open Access Journal
issn 2075-4701
language English
last_indexed 2024-03-09T23:10:48Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Metals
spelling doaj.art-7cc24d9a517649598755ba458b21065c2023-11-23T17:45:48ZengMDPI AGMetals2075-47012022-08-01129142410.3390/met12091424Development of a Model to Estimate the Thermodynamic Stability of Organic Substances in Leaching ProcessesCarlos Ocampo-López0Álvaro Ospina-Sanjuan1Margarita Ramírez-Carmona2Leidy Rendón-Castrillón3Faculty of Chemical Engineering, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Universidad Pontificia Bolivariana, Circular 1A No. 70-01, Bloque 11, Medellín 050031, ColombiaFaculty of Electric and Electronic Engineering, Grupo de Investigaciones en Bioingeniería y Microelectrónica, Universidad Pontificia Bolivariana, Circular 1A No. 70-01, Bloque 11, Medellín 050031, ColombiaFaculty of Chemical Engineering, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Universidad Pontificia Bolivariana, Circular 1A No. 70-01, Bloque 11, Medellín 050031, ColombiaFaculty of Chemical Engineering, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Universidad Pontificia Bolivariana, Circular 1A No. 70-01, Bloque 11, Medellín 050031, ColombiaThe leaching processes for metals using organic substances represent a sustainable approach to recover precious minerals from solid matrices. However, the generation of organometallic species and the lack of thermodynamic diagrams make it difficult to advance the understanding of their behavior and optimize the process. In this work, a thermodynamically and stoichiometrically consistent mathematical model was developed to estimate the thermodynamic stability of organic substances during the leaching process, and iron leaching with oxalic acid was used as a case study. The Pourbaix and the global thermodynamic stability diagrams for the system were developed in this study. Using a Gaussian<sup>®</sup>, it was estimated that the Gibbs free energy formation for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Fe</mi><msubsup><mrow><mrow><mo>(</mo><mrow><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>4</mn></msub></mrow><mo>)</mo></mrow></mrow><mn>2</mn><mrow><mn>2</mn><mo>−</mo></mrow></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Fe</mi><msubsup><mrow><mrow><mo>(</mo><mrow><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>4</mn></msub></mrow><mo>)</mo></mrow></mrow><mn>2</mn><mrow><mn>1</mn><mo>−</mo></mrow></msubsup><mo>,</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Fe</mi><msubsup><mrow><mrow><mo>(</mo><mrow><msub><mi mathvariant="normal">C</mi><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>4</mn></msub></mrow><mo>)</mo></mrow></mrow><mn>3</mn><mrow><mn>3</mn><mo>−</mo></mrow></msubsup></mrow></semantics></math></inline-formula> was −1407.51, −2308.38, and −3068.89 kcal/mol. A set of eleven independent reactions was formulated for the sixteen species involved in the leaching process, and its stability functions in terms of E<sub>h</sub> and pH were calculated to generate a 3D global thermodynamic stability diagram. According to the E<sub>h</sub>-pH diagrams for the leaching process, ferrioxalate was identified as the most stable and predominant species in the leaching process at pH above 6.6 under reductive conditions. The mathematical model developed in this work resulted in a thermodynamic tool for predicting leaching processes.https://www.mdpi.com/2075-4701/12/9/1424organic leachingE<sub>h</sub>-pH diagramsstabilityPourbaixironfree energy
spellingShingle Carlos Ocampo-López
Álvaro Ospina-Sanjuan
Margarita Ramírez-Carmona
Leidy Rendón-Castrillón
Development of a Model to Estimate the Thermodynamic Stability of Organic Substances in Leaching Processes
Metals
organic leaching
E<sub>h</sub>-pH diagrams
stability
Pourbaix
iron
free energy
title Development of a Model to Estimate the Thermodynamic Stability of Organic Substances in Leaching Processes
title_full Development of a Model to Estimate the Thermodynamic Stability of Organic Substances in Leaching Processes
title_fullStr Development of a Model to Estimate the Thermodynamic Stability of Organic Substances in Leaching Processes
title_full_unstemmed Development of a Model to Estimate the Thermodynamic Stability of Organic Substances in Leaching Processes
title_short Development of a Model to Estimate the Thermodynamic Stability of Organic Substances in Leaching Processes
title_sort development of a model to estimate the thermodynamic stability of organic substances in leaching processes
topic organic leaching
E<sub>h</sub>-pH diagrams
stability
Pourbaix
iron
free energy
url https://www.mdpi.com/2075-4701/12/9/1424
work_keys_str_mv AT carlosocampolopez developmentofamodeltoestimatethethermodynamicstabilityoforganicsubstancesinleachingprocesses
AT alvaroospinasanjuan developmentofamodeltoestimatethethermodynamicstabilityoforganicsubstancesinleachingprocesses
AT margaritaramirezcarmona developmentofamodeltoestimatethethermodynamicstabilityoforganicsubstancesinleachingprocesses
AT leidyrendoncastrillon developmentofamodeltoestimatethethermodynamicstabilityoforganicsubstancesinleachingprocesses