Model Matematis Prediksi Produk Sukses Berdasarkan Orientasi Fungsional Emosional Produk

The risk of product loss can be minimized by mathematical model of predictive success or failure of a product at the early design stage. Model is build from 30 graphics of strategy canvas industries.Canvas strategy contains success factors product overview. This research starts with standardise canv...

Full description

Bibliographic Details
Main Author: Niko Siameva Uletika
Format: Article
Language:Indonesian
Published: Universitas Jenderal Soedirman 2013-06-01
Series:Dinamika Rekayasa
Subjects:
Online Access:http://dinarek.unsoed.ac.id/jurnal/index.php/dinarek/article/view/99
_version_ 1818133515213996032
author Niko Siameva Uletika
author_facet Niko Siameva Uletika
author_sort Niko Siameva Uletika
collection DOAJ
description The risk of product loss can be minimized by mathematical model of predictive success or failure of a product at the early design stage. Model is build from 30 graphics of strategy canvas industries.Canvas strategy contains success factors product overview. This research starts with standardise canvas intervaland factor successdescription. Next step is factors succesclasification, based on functionalemotional product orientation. The result of it are 66 data sets. Data set are constructed based on value innovation concept. Every data set consist ofone price factor, one innovation factor and one factor of succes indicator. The Mathematical model from desimal data obtained by Ordinary LeastSquare (OLS) estimation parameter method. Binary data obtained by Maximum Likelihood Estimator (MLE). Mathematical model selection base onmodel and coeficient significant (α=0.05). While model significances decimal data are then validated by One Way Analysis of Variance (ANOVA), binary data validated by Hosmer and Lemeshow analysis to testgoodness of fit of the model. Coefficient of significances are tested with t and wald statistic. Finally, mathematical model required is derived from prediction capability relied on R squareAdjusted for decimal data and R square Nagelkerke analysis for binary data. The result of this research is model with prediction capability up to 70%. Thereare three models developed, new emotional model with 74.1% predictioncapability, functional velocity model (73.1%), and functional capability (70.8%).
first_indexed 2024-12-11T08:53:57Z
format Article
id doaj.art-7cc7f4ffc1244ec4ab42b57946153ebb
institution Directory Open Access Journal
issn 1858-3075
2527-6131
language Indonesian
last_indexed 2024-12-11T08:53:57Z
publishDate 2013-06-01
publisher Universitas Jenderal Soedirman
record_format Article
series Dinamika Rekayasa
spelling doaj.art-7cc7f4ffc1244ec4ab42b57946153ebb2022-12-22T01:13:57ZindUniversitas Jenderal SoedirmanDinamika Rekayasa1858-30752527-61312013-06-01912933101Model Matematis Prediksi Produk Sukses Berdasarkan Orientasi Fungsional Emosional ProdukNiko Siameva Uletika0Prodi Teknik Industri Universitas Jenderal SoedirmanThe risk of product loss can be minimized by mathematical model of predictive success or failure of a product at the early design stage. Model is build from 30 graphics of strategy canvas industries.Canvas strategy contains success factors product overview. This research starts with standardise canvas intervaland factor successdescription. Next step is factors succesclasification, based on functionalemotional product orientation. The result of it are 66 data sets. Data set are constructed based on value innovation concept. Every data set consist ofone price factor, one innovation factor and one factor of succes indicator. The Mathematical model from desimal data obtained by Ordinary LeastSquare (OLS) estimation parameter method. Binary data obtained by Maximum Likelihood Estimator (MLE). Mathematical model selection base onmodel and coeficient significant (α=0.05). While model significances decimal data are then validated by One Way Analysis of Variance (ANOVA), binary data validated by Hosmer and Lemeshow analysis to testgoodness of fit of the model. Coefficient of significances are tested with t and wald statistic. Finally, mathematical model required is derived from prediction capability relied on R squareAdjusted for decimal data and R square Nagelkerke analysis for binary data. The result of this research is model with prediction capability up to 70%. Thereare three models developed, new emotional model with 74.1% predictioncapability, functional velocity model (73.1%), and functional capability (70.8%).http://dinarek.unsoed.ac.id/jurnal/index.php/dinarek/article/view/99mathematic model, prediction, success factor, product design
spellingShingle Niko Siameva Uletika
Model Matematis Prediksi Produk Sukses Berdasarkan Orientasi Fungsional Emosional Produk
Dinamika Rekayasa
mathematic model, prediction, success factor, product design
title Model Matematis Prediksi Produk Sukses Berdasarkan Orientasi Fungsional Emosional Produk
title_full Model Matematis Prediksi Produk Sukses Berdasarkan Orientasi Fungsional Emosional Produk
title_fullStr Model Matematis Prediksi Produk Sukses Berdasarkan Orientasi Fungsional Emosional Produk
title_full_unstemmed Model Matematis Prediksi Produk Sukses Berdasarkan Orientasi Fungsional Emosional Produk
title_short Model Matematis Prediksi Produk Sukses Berdasarkan Orientasi Fungsional Emosional Produk
title_sort model matematis prediksi produk sukses berdasarkan orientasi fungsional emosional produk
topic mathematic model, prediction, success factor, product design
url http://dinarek.unsoed.ac.id/jurnal/index.php/dinarek/article/view/99
work_keys_str_mv AT nikosiamevauletika modelmatematisprediksiproduksuksesberdasarkanorientasifungsionalemosionalproduk