Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data

Global crop mapping and monitoring requires high-resolution spatio-temporal information. In this regard, dual polarimetric Synthetic Aperture Radar (SAR) sensors provide high temporal and high spatial resolutions with large swath width. Generally, crop phenological development studies utilized SAR b...

Full description

Bibliographic Details
Main Authors: Subhadip Dey, Narayanarao Bhogapurapu, Saeid Homayouni, Avik Bhattacharya, Heather McNairn
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/21/4412
_version_ 1797511862320889856
author Subhadip Dey
Narayanarao Bhogapurapu
Saeid Homayouni
Avik Bhattacharya
Heather McNairn
author_facet Subhadip Dey
Narayanarao Bhogapurapu
Saeid Homayouni
Avik Bhattacharya
Heather McNairn
author_sort Subhadip Dey
collection DOAJ
description Global crop mapping and monitoring requires high-resolution spatio-temporal information. In this regard, dual polarimetric Synthetic Aperture Radar (SAR) sensors provide high temporal and high spatial resolutions with large swath width. Generally, crop phenological development studies utilized SAR backscatter intensity-based descriptors. However, these descriptors are derived either from the covariance matrix elements or from the eigendecomposition. Therefore, this approach fails to utilize the complete polarization information of the scattered wave. In this study, we propose a target characterization parameter, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> that utilizes the 2D Barakat degree of polarization and the elements of the covariance matrix. We also propose an unsupervised clustering scheme using <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> and the scattering entropy, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mi>xP</mi></msub></semantics></math></inline-formula>. We utilize time-series Sentinel-1 data of canola and wheat fields over a Canadian test site to show the sensitivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> to the development of crop morphology at different phenological stages. During the initial growth stages, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> values are low due to the low vegetation density. In contrast, at advanced phenological stages, we observe decreased values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> due to the appearance of complex canopy structure. Similarly, the effectiveness of the unsupervised <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mi>xP</mi></msub><mo>/</mo><msub><mi>θ</mi><mi>xP</mi></msub></mrow></semantics></math></inline-formula> clustering plane is also evident from the temporal clustering plots. This innovative clustering framework is beneficial for the operational use of Sentinel-1 SAR data for agricultural applications.
first_indexed 2024-03-10T05:53:57Z
format Article
id doaj.art-7cca86ff896b430194d5ba681747f379
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T05:53:57Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-7cca86ff896b430194d5ba681747f3792023-11-22T21:33:05ZengMDPI AGRemote Sensing2072-42922021-11-011321441210.3390/rs13214412Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR DataSubhadip Dey0Narayanarao Bhogapurapu1Saeid Homayouni2Avik Bhattacharya3Heather McNairn4Microwave Remote Sensing Lab, Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai 400076, IndiaMicrowave Remote Sensing Lab, Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai 400076, IndiaCentre Eau Terre Environnement, INRS, 490 Couronne St, Quebec City, QC G1K 9A9, CanadaMicrowave Remote Sensing Lab, Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai 400076, IndiaOttawa Research and Development Centre, Agriculture and Agri-Food Canada, 1341 Baseline Road, Ottawa, ON K1A 0C5, CanadaGlobal crop mapping and monitoring requires high-resolution spatio-temporal information. In this regard, dual polarimetric Synthetic Aperture Radar (SAR) sensors provide high temporal and high spatial resolutions with large swath width. Generally, crop phenological development studies utilized SAR backscatter intensity-based descriptors. However, these descriptors are derived either from the covariance matrix elements or from the eigendecomposition. Therefore, this approach fails to utilize the complete polarization information of the scattered wave. In this study, we propose a target characterization parameter, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> that utilizes the 2D Barakat degree of polarization and the elements of the covariance matrix. We also propose an unsupervised clustering scheme using <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> and the scattering entropy, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mi>xP</mi></msub></semantics></math></inline-formula>. We utilize time-series Sentinel-1 data of canola and wheat fields over a Canadian test site to show the sensitivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> to the development of crop morphology at different phenological stages. During the initial growth stages, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> values are low due to the low vegetation density. In contrast, at advanced phenological stages, we observe decreased values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> due to the appearance of complex canopy structure. Similarly, the effectiveness of the unsupervised <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mi>xP</mi></msub><mo>/</mo><msub><mi>θ</mi><mi>xP</mi></msub></mrow></semantics></math></inline-formula> clustering plane is also evident from the temporal clustering plots. This innovative clustering framework is beneficial for the operational use of Sentinel-1 SAR data for agricultural applications.https://www.mdpi.com/2072-4292/13/21/4412Sentinel-1polarimetrydual-polcrop characterizationphenologyunsupervised classification
spellingShingle Subhadip Dey
Narayanarao Bhogapurapu
Saeid Homayouni
Avik Bhattacharya
Heather McNairn
Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data
Remote Sensing
Sentinel-1
polarimetry
dual-pol
crop characterization
phenology
unsupervised classification
title Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data
title_full Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data
title_fullStr Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data
title_full_unstemmed Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data
title_short Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data
title_sort unsupervised classification of crop growth stages with scattering parameters from dual pol sentinel 1 sar data
topic Sentinel-1
polarimetry
dual-pol
crop characterization
phenology
unsupervised classification
url https://www.mdpi.com/2072-4292/13/21/4412
work_keys_str_mv AT subhadipdey unsupervisedclassificationofcropgrowthstageswithscatteringparametersfromdualpolsentinel1sardata
AT narayanaraobhogapurapu unsupervisedclassificationofcropgrowthstageswithscatteringparametersfromdualpolsentinel1sardata
AT saeidhomayouni unsupervisedclassificationofcropgrowthstageswithscatteringparametersfromdualpolsentinel1sardata
AT avikbhattacharya unsupervisedclassificationofcropgrowthstageswithscatteringparametersfromdualpolsentinel1sardata
AT heathermcnairn unsupervisedclassificationofcropgrowthstageswithscatteringparametersfromdualpolsentinel1sardata