Potential of eye-tracking simulation software for analyzing landscape preferences.
Profound knowledge about landscape preferences is of high importance to support decision-making, in particular, in the context of emerging socio-economic developments to foster a sustainable spatial development and the maintenance of attractive landscapes. Eye-tracking experiments are increasingly u...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2022-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0273519 |
_version_ | 1811244216292999168 |
---|---|
author | Uta Schirpke Erich Tasser Alexandros A Lavdas |
author_facet | Uta Schirpke Erich Tasser Alexandros A Lavdas |
author_sort | Uta Schirpke |
collection | DOAJ |
description | Profound knowledge about landscape preferences is of high importance to support decision-making, in particular, in the context of emerging socio-economic developments to foster a sustainable spatial development and the maintenance of attractive landscapes. Eye-tracking experiments are increasingly used to examine how respondents observe landscapes, but such studies are very time-consuming and costly. For the first time, this study explored the potential of using eye-tracking simulation software in a mountain landscape by (1) identifying the type of information that can be obtained through eye-tracking simulation and (2) examining how this information contributes to the explanation of landscape preferences. Based on 78 panoramic landscape photographs, representing major landscape types of the Central European Alps, this study collected 19 indicators describing the characteristics of the hotspots that were identified by the Visual Attention Software by 3M (3M-VAS). Indicators included quantitative and spatial information (e.g., number of hotspots, probabilities of initially viewing the hotspots) as well variables indicating natural and artificial features within the hotspots (e.g., clouds, lighting conditions, natural and anthropogenic features). In addition, we estimated 18 variables describing the photo content and calculated 12 landscape metrics to quantify spatial patterns. Our results indicate that on average 3.3 hotspots were identified per photograph, mostly containing single trees and tree trunks, buildings and horizon transitions. Using backward stepwise linear regression models, the hotspot indicators increased the model explanatory power by 24%. Thus, our findings indicate that the analysis of eye-tracking hotspots can support the identification of important elements and areas of a landscape, but it is limited in explaining preferences across different landscape types. Future research should therefore focus on specific landscape characteristics such as complexity, structure or visual appearance of specific elements to increase the depth of information obtained from eye-tracking simulation software. |
first_indexed | 2024-04-12T14:21:57Z |
format | Article |
id | doaj.art-7cdb40dfea3d4cb78ced9e63dae619cf |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-12T14:21:57Z |
publishDate | 2022-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-7cdb40dfea3d4cb78ced9e63dae619cf2022-12-22T03:29:33ZengPublic Library of Science (PLoS)PLoS ONE1932-62032022-01-011710e027351910.1371/journal.pone.0273519Potential of eye-tracking simulation software for analyzing landscape preferences.Uta SchirpkeErich TasserAlexandros A LavdasProfound knowledge about landscape preferences is of high importance to support decision-making, in particular, in the context of emerging socio-economic developments to foster a sustainable spatial development and the maintenance of attractive landscapes. Eye-tracking experiments are increasingly used to examine how respondents observe landscapes, but such studies are very time-consuming and costly. For the first time, this study explored the potential of using eye-tracking simulation software in a mountain landscape by (1) identifying the type of information that can be obtained through eye-tracking simulation and (2) examining how this information contributes to the explanation of landscape preferences. Based on 78 panoramic landscape photographs, representing major landscape types of the Central European Alps, this study collected 19 indicators describing the characteristics of the hotspots that were identified by the Visual Attention Software by 3M (3M-VAS). Indicators included quantitative and spatial information (e.g., number of hotspots, probabilities of initially viewing the hotspots) as well variables indicating natural and artificial features within the hotspots (e.g., clouds, lighting conditions, natural and anthropogenic features). In addition, we estimated 18 variables describing the photo content and calculated 12 landscape metrics to quantify spatial patterns. Our results indicate that on average 3.3 hotspots were identified per photograph, mostly containing single trees and tree trunks, buildings and horizon transitions. Using backward stepwise linear regression models, the hotspot indicators increased the model explanatory power by 24%. Thus, our findings indicate that the analysis of eye-tracking hotspots can support the identification of important elements and areas of a landscape, but it is limited in explaining preferences across different landscape types. Future research should therefore focus on specific landscape characteristics such as complexity, structure or visual appearance of specific elements to increase the depth of information obtained from eye-tracking simulation software.https://doi.org/10.1371/journal.pone.0273519 |
spellingShingle | Uta Schirpke Erich Tasser Alexandros A Lavdas Potential of eye-tracking simulation software for analyzing landscape preferences. PLoS ONE |
title | Potential of eye-tracking simulation software for analyzing landscape preferences. |
title_full | Potential of eye-tracking simulation software for analyzing landscape preferences. |
title_fullStr | Potential of eye-tracking simulation software for analyzing landscape preferences. |
title_full_unstemmed | Potential of eye-tracking simulation software for analyzing landscape preferences. |
title_short | Potential of eye-tracking simulation software for analyzing landscape preferences. |
title_sort | potential of eye tracking simulation software for analyzing landscape preferences |
url | https://doi.org/10.1371/journal.pone.0273519 |
work_keys_str_mv | AT utaschirpke potentialofeyetrackingsimulationsoftwareforanalyzinglandscapepreferences AT erichtasser potentialofeyetrackingsimulationsoftwareforanalyzinglandscapepreferences AT alexandrosalavdas potentialofeyetrackingsimulationsoftwareforanalyzinglandscapepreferences |