Manganese Mineralization of Pathogenic Viruses as a Universal Vaccine Platform

Abstract Biomimetic viral mineralization improves viral vaccine stability and immunogenicity using inorganic metals such as Ca, Al, or Fe. Mn is a metal found in high concentrations in mammalian tissues; however, under natural or laboratory conditions, Mn mineralization by medical viruses has yet to...

Full description

Bibliographic Details
Main Authors: Pan‐Deng Shi, Yan‐Peng Xu, Zhu Zhu, Chao Zhou, Mei Wu, Yangzhige He, Hui Zhao, Liying Liu, Linqing Zhao, Xiao‐Feng Li, Cheng‐Feng Qin
Format: Article
Language:English
Published: Wiley 2023-11-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202303615
Description
Summary:Abstract Biomimetic viral mineralization improves viral vaccine stability and immunogenicity using inorganic metals such as Ca, Al, or Fe. Mn is a metal found in high concentrations in mammalian tissues; however, under natural or laboratory conditions, Mn mineralization by medical viruses has yet to be established. Herein, a single IAV particle is successfully encapsulated with manganese phosphate (MnP) under specific conditions using the human influenza A virus (IAV). MnP‐mineralized IAVs (IAV@Mn) exhibited physiochemical and in vitro properties similar to Ca‐mineralized IAVs. In animal models, IAV@Mn shows limited replication in immune‐competent cells and a significant attenuation compared to naïve cells. Moreover, a single‐dose vaccination with IAV@Mn induced robust humoral and cellular immune responses and conferred significant protection against a wild‐type IAV challenge in mice. Thus, Mn mineralization in pathogenic viruses provides a rapid and universal strategy for generating an emergency vaccine in response to emerging viruses.
ISSN:2198-3844