Explicit Properties of <i>q</i>-Cosine and <i>q</i>-Sine Euler Polynomials Containing Symmetric Structures

In this paper, we introduce <i>q</i>-cosine and <i>q</i>-sine Euler polynomials and determine identities for these polynomials. From these polynomials, we obtain some special properties using a power series of <i>q</i>-trigonometric functions, properties of <i&...

Full description

Bibliographic Details
Main Authors: Cheon Seoung Ryoo, Jung Yoog Kang
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/8/1247
_version_ 1797561076980645888
author Cheon Seoung Ryoo
Jung Yoog Kang
author_facet Cheon Seoung Ryoo
Jung Yoog Kang
author_sort Cheon Seoung Ryoo
collection DOAJ
description In this paper, we introduce <i>q</i>-cosine and <i>q</i>-sine Euler polynomials and determine identities for these polynomials. From these polynomials, we obtain some special properties using a power series of <i>q</i>-trigonometric functions, properties of <i>q</i>-exponential functions, and <i>q</i>-analogues of the binomial theorem. We investigate the approximate roots of <i>q</i>-cosine Euler polynomials that help us understand these polynomials. Moreover, we display the approximate roots movements of <i>q</i>-cosine Euler polynomials in a complex plane using the Newton method.
first_indexed 2024-03-10T18:09:10Z
format Article
id doaj.art-7cf1d800c15a4bdfa95ba3f7b6ca2f50
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T18:09:10Z
publishDate 2020-07-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-7cf1d800c15a4bdfa95ba3f7b6ca2f502023-11-20T08:16:17ZengMDPI AGSymmetry2073-89942020-07-01128124710.3390/sym12081247Explicit Properties of <i>q</i>-Cosine and <i>q</i>-Sine Euler Polynomials Containing Symmetric StructuresCheon Seoung Ryoo0Jung Yoog Kang1Department of Mathematics, Hanman University, Daejeon 10216, KoreaDepartment of Mathematics Education, Silla University, Busan 469470, KoreaIn this paper, we introduce <i>q</i>-cosine and <i>q</i>-sine Euler polynomials and determine identities for these polynomials. From these polynomials, we obtain some special properties using a power series of <i>q</i>-trigonometric functions, properties of <i>q</i>-exponential functions, and <i>q</i>-analogues of the binomial theorem. We investigate the approximate roots of <i>q</i>-cosine Euler polynomials that help us understand these polynomials. Moreover, we display the approximate roots movements of <i>q</i>-cosine Euler polynomials in a complex plane using the Newton method.https://www.mdpi.com/2073-8994/12/8/1247q-cosine Euler polynomialsq-sine Euler polynomialsq-trigonometric functionq-exponential function
spellingShingle Cheon Seoung Ryoo
Jung Yoog Kang
Explicit Properties of <i>q</i>-Cosine and <i>q</i>-Sine Euler Polynomials Containing Symmetric Structures
Symmetry
q-cosine Euler polynomials
q-sine Euler polynomials
q-trigonometric function
q-exponential function
title Explicit Properties of <i>q</i>-Cosine and <i>q</i>-Sine Euler Polynomials Containing Symmetric Structures
title_full Explicit Properties of <i>q</i>-Cosine and <i>q</i>-Sine Euler Polynomials Containing Symmetric Structures
title_fullStr Explicit Properties of <i>q</i>-Cosine and <i>q</i>-Sine Euler Polynomials Containing Symmetric Structures
title_full_unstemmed Explicit Properties of <i>q</i>-Cosine and <i>q</i>-Sine Euler Polynomials Containing Symmetric Structures
title_short Explicit Properties of <i>q</i>-Cosine and <i>q</i>-Sine Euler Polynomials Containing Symmetric Structures
title_sort explicit properties of i q i cosine and i q i sine euler polynomials containing symmetric structures
topic q-cosine Euler polynomials
q-sine Euler polynomials
q-trigonometric function
q-exponential function
url https://www.mdpi.com/2073-8994/12/8/1247
work_keys_str_mv AT cheonseoungryoo explicitpropertiesofiqicosineandiqisineeulerpolynomialscontainingsymmetricstructures
AT jungyoogkang explicitpropertiesofiqicosineandiqisineeulerpolynomialscontainingsymmetricstructures