Asymptotic Profile for Diffusion Wave Terms of the Compressible Navier–Stokes–Korteweg System

The asymptotic profile for diffusion wave terms of solutions to the compressible Navier–Stokes–Korteweg system is studied on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-...

Full description

Bibliographic Details
Main Authors: Takayuki Kobayashi, Masashi Misawa, Kazuyuki Tsuda
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/6/683
Description
Summary:The asymptotic profile for diffusion wave terms of solutions to the compressible Navier–Stokes–Korteweg system is studied on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>2</mn></msup></semantics></math></inline-formula>. The diffusion wave with time-decay estimate was studied by Hoff and Zumbrun (1995, 1997), Kobayashi and Shibata (2002), and Kobayashi and Tsuda (2018) for compressible Navier–Stokes and compressible Navier–Stokes–Korteweg systems. Our main assertion in this paper is that, for some initial conditions given by the Hardy space, asymptotic behaviors in space–time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> of the diffusion wave parts are essentially different between density and the potential flow part of the momentum. Even though measuring by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> on space, decay of the potential flow part is slower than that of the Stokes flow part of the momentum. The proof is based on a modified version of Morawetz’s energy estimate, and the Fefferman–Stein inequality on the duality between the Hardy space and functions of bounded mean oscillation.
ISSN:2227-7390