Asymptotic Profile for Diffusion Wave Terms of the Compressible Navier–Stokes–Korteweg System

The asymptotic profile for diffusion wave terms of solutions to the compressible Navier–Stokes–Korteweg system is studied on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-...

Full description

Bibliographic Details
Main Authors: Takayuki Kobayashi, Masashi Misawa, Kazuyuki Tsuda
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/6/683
_version_ 1797540431367503872
author Takayuki Kobayashi
Masashi Misawa
Kazuyuki Tsuda
author_facet Takayuki Kobayashi
Masashi Misawa
Kazuyuki Tsuda
author_sort Takayuki Kobayashi
collection DOAJ
description The asymptotic profile for diffusion wave terms of solutions to the compressible Navier–Stokes–Korteweg system is studied on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>2</mn></msup></semantics></math></inline-formula>. The diffusion wave with time-decay estimate was studied by Hoff and Zumbrun (1995, 1997), Kobayashi and Shibata (2002), and Kobayashi and Tsuda (2018) for compressible Navier–Stokes and compressible Navier–Stokes–Korteweg systems. Our main assertion in this paper is that, for some initial conditions given by the Hardy space, asymptotic behaviors in space–time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> of the diffusion wave parts are essentially different between density and the potential flow part of the momentum. Even though measuring by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> on space, decay of the potential flow part is slower than that of the Stokes flow part of the momentum. The proof is based on a modified version of Morawetz’s energy estimate, and the Fefferman–Stein inequality on the duality between the Hardy space and functions of bounded mean oscillation.
first_indexed 2024-03-10T13:01:03Z
format Article
id doaj.art-7cf9c940e680425b98e29ccfbf670b50
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T13:01:03Z
publishDate 2021-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-7cf9c940e680425b98e29ccfbf670b502023-11-21T11:33:14ZengMDPI AGMathematics2227-73902021-03-019668310.3390/math9060683Asymptotic Profile for Diffusion Wave Terms of the Compressible Navier–Stokes–Korteweg SystemTakayuki Kobayashi0Masashi Misawa1Kazuyuki Tsuda2Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyamacho, Toyonakashi 560-8531, JapanDepartment of Science, Faculty of Science, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, JapanFaculty of Science and Engineering, Kyushu Sangyo University, 3-1, Matsukadai 2-Chome, Higashi-ku, Fukuoka 813-8503, JapanThe asymptotic profile for diffusion wave terms of solutions to the compressible Navier–Stokes–Korteweg system is studied on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>2</mn></msup></semantics></math></inline-formula>. The diffusion wave with time-decay estimate was studied by Hoff and Zumbrun (1995, 1997), Kobayashi and Shibata (2002), and Kobayashi and Tsuda (2018) for compressible Navier–Stokes and compressible Navier–Stokes–Korteweg systems. Our main assertion in this paper is that, for some initial conditions given by the Hardy space, asymptotic behaviors in space–time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> of the diffusion wave parts are essentially different between density and the potential flow part of the momentum. Even though measuring by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula> on space, decay of the potential flow part is slower than that of the Stokes flow part of the momentum. The proof is based on a modified version of Morawetz’s energy estimate, and the Fefferman–Stein inequality on the duality between the Hardy space and functions of bounded mean oscillation.https://www.mdpi.com/2227-7390/9/6/683compressible Navier–Stokes–Korteweg systemasymptotic profilediffusion wavehardy space
spellingShingle Takayuki Kobayashi
Masashi Misawa
Kazuyuki Tsuda
Asymptotic Profile for Diffusion Wave Terms of the Compressible Navier–Stokes–Korteweg System
Mathematics
compressible Navier–Stokes–Korteweg system
asymptotic profile
diffusion wave
hardy space
title Asymptotic Profile for Diffusion Wave Terms of the Compressible Navier–Stokes–Korteweg System
title_full Asymptotic Profile for Diffusion Wave Terms of the Compressible Navier–Stokes–Korteweg System
title_fullStr Asymptotic Profile for Diffusion Wave Terms of the Compressible Navier–Stokes–Korteweg System
title_full_unstemmed Asymptotic Profile for Diffusion Wave Terms of the Compressible Navier–Stokes–Korteweg System
title_short Asymptotic Profile for Diffusion Wave Terms of the Compressible Navier–Stokes–Korteweg System
title_sort asymptotic profile for diffusion wave terms of the compressible navier stokes korteweg system
topic compressible Navier–Stokes–Korteweg system
asymptotic profile
diffusion wave
hardy space
url https://www.mdpi.com/2227-7390/9/6/683
work_keys_str_mv AT takayukikobayashi asymptoticprofilefordiffusionwavetermsofthecompressiblenavierstokeskortewegsystem
AT masashimisawa asymptoticprofilefordiffusionwavetermsofthecompressiblenavierstokeskortewegsystem
AT kazuyukitsuda asymptoticprofilefordiffusionwavetermsofthecompressiblenavierstokeskortewegsystem