Riffle shuffles with biased cuts

The well-known Gilbert-Shannon-Reeds model for riffle shuffles assumes that the cards are initially cut `about in half' and then riffled together. We analyze a natural variant where the initial cut is biased. Extending results of Fulman (1998), we show a sharp cutoff in separation and L-infinit...

Full description

Bibliographic Details
Main Authors: Sami Assaf, Persi Diaconis, Kannan Soundararajan
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2012-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3053/pdf
Description
Summary:The well-known Gilbert-Shannon-Reeds model for riffle shuffles assumes that the cards are initially cut `about in half' and then riffled together. We analyze a natural variant where the initial cut is biased. Extending results of Fulman (1998), we show a sharp cutoff in separation and L-infinity distances. This analysis is possible due to the close connection between shuffling and quasisymmetric functions along with some complex analysis of a generating function.
ISSN:1365-8050