A computational pipeline to visualize DNA-protein binding states using dSMF data
Summary: Here, we present a pipeline to map states of protein-binding DNA in vivo. Our pipeline infers as well as quantifies cooperative binding. Using dual-enzyme single-molecule footprinting (dSMF) data, we show how our workflow identifies binding states at an enhancer in Drosophila S2 cells. Data...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-06-01
|
Series: | STAR Protocols |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2666166722001794 |
Summary: | Summary: Here, we present a pipeline to map states of protein-binding DNA in vivo. Our pipeline infers as well as quantifies cooperative binding. Using dual-enzyme single-molecule footprinting (dSMF) data, we show how our workflow identifies binding states at an enhancer in Drosophila S2 cells. Data from cells lacking endogenous DNA methylation are a prerequisite for this pipeline.For complete details on the use and execution of this protocol, please refer to Rao et al. (2021) and Krebs et al. (2017). |
---|---|
ISSN: | 2666-1667 |