One Step Preparation of Fe–FeO–Graphene Nanocomposite through Pulsed Wire Discharge

The Fe–FeO–graphene nanocomposite material was produced successfully by pulsed wire discharge in graphene oxide (GO) suspension. Pure iron wires with a diameter of 0.25 mm and a length of 100 mm were used in the experiments. The discharge current and voltage were recorded to analyze the process of t...

Full description

Bibliographic Details
Main Authors: Xin Gao, Naoaki Yokota, Hayato Oda, Shigeru Tanaka, Kazuyuki Hokamoto, Pengwan Chen
Format: Article
Language:English
Published: MDPI AG 2018-02-01
Series:Crystals
Subjects:
Online Access:http://www.mdpi.com/2073-4352/8/2/104
Description
Summary:The Fe–FeO–graphene nanocomposite material was produced successfully by pulsed wire discharge in graphene oxide (GO) suspension. Pure iron wires with a diameter of 0.25 mm and a length of 100 mm were used in the experiments. The discharge current and voltage were recorded to analyze the process of the pulsed wire discharge. The as-prepared samples—under different charging voltages—were recovered and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, and transmission electron microscopy (TEM). Curved and loose graphene films that were anchored with spherical Fe and FeO nanoparticles were obtained at the charging voltage of 8–10 kV. The present study discusses the mechanism by which the Fe–FeO–graphene nanocomposite material was formed during the pulsed wire discharge process.
ISSN:2073-4352