The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear

Ecological modeling requires sufficient spatial resolution and a careful selection of environmental variables to achieve good predictive performance. Although national and international administrations offer fine-scale environmental data, they usually have limited spatial coverage (country or contin...

Full description

Bibliographic Details
Main Authors: Pablo Cisneros-Araujo, Teresa Goicolea, María Cruz Mateo-Sánchez, Juan Ignacio García-Viñás, Miguel Marchamalo, Audrey Mercier, Aitor Gastón
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/6/1138
_version_ 1797541050137444352
author Pablo Cisneros-Araujo
Teresa Goicolea
María Cruz Mateo-Sánchez
Juan Ignacio García-Viñás
Miguel Marchamalo
Audrey Mercier
Aitor Gastón
author_facet Pablo Cisneros-Araujo
Teresa Goicolea
María Cruz Mateo-Sánchez
Juan Ignacio García-Viñás
Miguel Marchamalo
Audrey Mercier
Aitor Gastón
author_sort Pablo Cisneros-Araujo
collection DOAJ
description Ecological modeling requires sufficient spatial resolution and a careful selection of environmental variables to achieve good predictive performance. Although national and international administrations offer fine-scale environmental data, they usually have limited spatial coverage (country or continent). Alternatively, optical and radar satellite imagery is available with high resolutions, global coverage and frequent revisit intervals. Here, we compared the performance of ecological models trained with free satellite data with models fitted using regionally restricted spatial datasets. We developed brown bear habitat suitability and connectivity models from three datasets with different spatial coverage and accessibility. These datasets comprised (1) a Sentinel-1 and 2 land cover map (global coverage); (2) pan-European vegetation and land cover layers (continental coverage); and (3) LiDAR data and the Forest Map of Spain (national coverage). Results show that Sentinel imagery and pan-European datasets are powerful sources to estimate vegetation variables for habitat and connectivity modeling. However, Sentinel data could be limited for understanding precise habitat–species associations if the derived discrete variables do not distinguish a wide range of vegetation types. Therefore, more effort should be taken to improving the thematic resolution of satellite-derived vegetation variables. Our findings support the application of ecological modeling worldwide and can help select spatial datasets according to their coverage and resolution for habitat suitability and connectivity modeling.
first_indexed 2024-03-10T13:09:46Z
format Article
id doaj.art-7d2f7e2402804ed6b089d74f175bac91
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T13:09:46Z
publishDate 2021-03-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-7d2f7e2402804ed6b089d74f175bac912023-11-21T10:49:49ZengMDPI AGRemote Sensing2072-42922021-03-01136113810.3390/rs13061138The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown BearPablo Cisneros-Araujo0Teresa Goicolea1María Cruz Mateo-Sánchez2Juan Ignacio García-Viñás3Miguel Marchamalo4Audrey Mercier5Aitor Gastón6EGOGESFOR Research Group, Universidad Politécnica de Madrid, ETSI Montes, Forestal y del Medio Natural, Ciudad Universitaria s/n, 28040 Madrid, SpainEGOGESFOR Research Group, Universidad Politécnica de Madrid, ETSI Montes, Forestal y del Medio Natural, Ciudad Universitaria s/n, 28040 Madrid, SpainEGOGESFOR Research Group, Universidad Politécnica de Madrid, ETSI Montes, Forestal y del Medio Natural, Ciudad Universitaria s/n, 28040 Madrid, SpainEGOGESFOR Research Group, Universidad Politécnica de Madrid, ETSI Montes, Forestal y del Medio Natural, Ciudad Universitaria s/n, 28040 Madrid, SpainDepartamento de Ingeniería y Morfología del Terreno, Universidad Politécnica de Madrid, 28040 Madrid, SpainCIRAD, Forêts et Sociétés, Univ Montpellier, 34398 Montpellier, FranceEGOGESFOR Research Group, Universidad Politécnica de Madrid, ETSI Montes, Forestal y del Medio Natural, Ciudad Universitaria s/n, 28040 Madrid, SpainEcological modeling requires sufficient spatial resolution and a careful selection of environmental variables to achieve good predictive performance. Although national and international administrations offer fine-scale environmental data, they usually have limited spatial coverage (country or continent). Alternatively, optical and radar satellite imagery is available with high resolutions, global coverage and frequent revisit intervals. Here, we compared the performance of ecological models trained with free satellite data with models fitted using regionally restricted spatial datasets. We developed brown bear habitat suitability and connectivity models from three datasets with different spatial coverage and accessibility. These datasets comprised (1) a Sentinel-1 and 2 land cover map (global coverage); (2) pan-European vegetation and land cover layers (continental coverage); and (3) LiDAR data and the Forest Map of Spain (national coverage). Results show that Sentinel imagery and pan-European datasets are powerful sources to estimate vegetation variables for habitat and connectivity modeling. However, Sentinel data could be limited for understanding precise habitat–species associations if the derived discrete variables do not distinguish a wide range of vegetation types. Therefore, more effort should be taken to improving the thematic resolution of satellite-derived vegetation variables. Our findings support the application of ecological modeling worldwide and can help select spatial datasets according to their coverage and resolution for habitat suitability and connectivity modeling.https://www.mdpi.com/2072-4292/13/6/1138ecological modelinglandscape connectivityspecies–habitat relationshipsspatial resolutionthematic resolution<i>Ursus arctos</i>
spellingShingle Pablo Cisneros-Araujo
Teresa Goicolea
María Cruz Mateo-Sánchez
Juan Ignacio García-Viñás
Miguel Marchamalo
Audrey Mercier
Aitor Gastón
The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear
Remote Sensing
ecological modeling
landscape connectivity
species–habitat relationships
spatial resolution
thematic resolution
<i>Ursus arctos</i>
title The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear
title_full The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear
title_fullStr The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear
title_full_unstemmed The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear
title_short The Role of Remote Sensing Data in Habitat Suitability and Connectivity Modeling: Insights from the Cantabrian Brown Bear
title_sort role of remote sensing data in habitat suitability and connectivity modeling insights from the cantabrian brown bear
topic ecological modeling
landscape connectivity
species–habitat relationships
spatial resolution
thematic resolution
<i>Ursus arctos</i>
url https://www.mdpi.com/2072-4292/13/6/1138
work_keys_str_mv AT pablocisnerosaraujo theroleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT teresagoicolea theroleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT mariacruzmateosanchez theroleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT juanignaciogarciavinas theroleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT miguelmarchamalo theroleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT audreymercier theroleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT aitorgaston theroleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT pablocisnerosaraujo roleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT teresagoicolea roleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT mariacruzmateosanchez roleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT juanignaciogarciavinas roleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT miguelmarchamalo roleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT audreymercier roleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear
AT aitorgaston roleofremotesensingdatainhabitatsuitabilityandconnectivitymodelinginsightsfromthecantabrianbrownbear