Automatic ECG Diagnosis Using Convolutional Neural Network

Cardiovascular disease (CVD) is the most common class of chronic and life-threatening diseases and, therefore, considered to be one of the main causes of mortality. The proposed new neural architecture based on the recent popularity of convolutional neural networks (CNN) was a solution for the devel...

Full description

Bibliographic Details
Main Authors: Roberta Avanzato, Francesco Beritelli
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/6/951
Description
Summary:Cardiovascular disease (CVD) is the most common class of chronic and life-threatening diseases and, therefore, considered to be one of the main causes of mortality. The proposed new neural architecture based on the recent popularity of convolutional neural networks (CNN) was a solution for the development of automatic heart disease diagnosis systems using electrocardiogram (ECG) signals. More specifically, ECG signals were passed directly to a properly trained CNN network. The database consisted of more than 4000 ECG signal instances extracted from outpatient ECG examinations obtained from 47 subjects: 25 males and 22 females. The confusion matrix derived from the testing dataset indicated 99% accuracy for the “normal” class. For the “atrial premature beat” class, ECG segments were correctly classified 100% of the time. Finally, for the “premature ventricular contraction” class, ECG segments were correctly classified 96% of the time. In total, there was an average classification accuracy of 98.33%. The sensitivity (SNS) and the specificity (SPC) were, respectively, 98.33% and 98.35%. The new approach based on deep learning and, in particular, on a CNN network guaranteed excellent performance in automatic recognition and, therefore, prevention of cardiovascular diseases.
ISSN:2079-9292