Impact of High Glucose on Ocular Surface Glycocalyx Components: Implications for Diabetes-Associated Ocular Surface Damage

Diabetes mellitus causes several detrimental effects on the ocular surface, including compromised barrier function and an increased risk of infections. The glycocalyx plays a vital role in barrier function. The present study was designed to test the effect of a high glucose level on components of gl...

Full description

Bibliographic Details
Main Authors: Judy Weng, Steven Trinh, Rachel Lee, Rana Metwale, Ajay Sharma
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/22/14289
Description
Summary:Diabetes mellitus causes several detrimental effects on the ocular surface, including compromised barrier function and an increased risk of infections. The glycocalyx plays a vital role in barrier function. The present study was designed to test the effect of a high glucose level on components of glycocalyx. Stratified human corneal and conjunctival epithelial cells were exposed to a high glucose concentration for 24 and 72 h. Changes in Mucin (MUC) 1, 4, 16 expression were quantified using real-time PCR and ELISA. Rose bengal and jacalin staining were used to assess the spatial distribution of MUC16 and O-glycosylation. Changes in the gene expression of five glycosyltransferases and forty-two proteins involved in cell proliferation and the cell cycle were also quantified using PCR and a gene array. High glucose exposure did not affect the level or spatial distribution of membrane-tethered MUC 1, 4, and 16 either in the corneal or conjunctival epithelial cells. No change in gene expression in glycosyltransferases was observed, but a decrease in the gene expression of proteins involved in cell proliferation and the cell cycle was observed. A high-glucose-mediated decrease in gene expression of proteins involved in cellular proliferation of corneal and conjunctival epithelial cells may be one of the mechanisms underlying a diabetes-associated decrease in ocular surface’s glycocalyx.
ISSN:1661-6596
1422-0067