An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images

The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segment...

Full description

Bibliographic Details
Main Authors: Lisa M. Duff, Andrew F. Scarsbrook, Nishant Ravikumar, Russell Frood, Gijs D. van Praagh, Sarah L. Mackie, Marc A. Bailey, Jason M. Tarkin, Justin C. Mason, Kornelis S. M. van der Geest, Riemer H. J. A. Slart, Ann W. Morgan, Charalampos Tsoumpas
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/13/2/343
_version_ 1827758318995636224
author Lisa M. Duff
Andrew F. Scarsbrook
Nishant Ravikumar
Russell Frood
Gijs D. van Praagh
Sarah L. Mackie
Marc A. Bailey
Jason M. Tarkin
Justin C. Mason
Kornelis S. M. van der Geest
Riemer H. J. A. Slart
Ann W. Morgan
Charalampos Tsoumpas
author_facet Lisa M. Duff
Andrew F. Scarsbrook
Nishant Ravikumar
Russell Frood
Gijs D. van Praagh
Sarah L. Mackie
Marc A. Bailey
Jason M. Tarkin
Justin C. Mason
Kornelis S. M. van der Geest
Riemer H. J. A. Slart
Ann W. Morgan
Charalampos Tsoumpas
author_sort Lisa M. Duff
collection DOAJ
description The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were constructed: A—RFs with high diagnostic utility removing highly correlated RFs; B used principal component analysis (PCA); C—Random Forest intrinsic feature selection. The diagnostic utility was evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across training, test and external validation datasets. Good diagnostic performance achieved across several multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be used to build an automated clinical decision tool to facilitate objective and standardized assessment regardless of observer experience.
first_indexed 2024-03-11T09:06:01Z
format Article
id doaj.art-7d7a3b735b86439e87f00a13c1d8467f
institution Directory Open Access Journal
issn 2218-273X
language English
last_indexed 2024-03-11T09:06:01Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Biomolecules
spelling doaj.art-7d7a3b735b86439e87f00a13c1d8467f2023-11-16T19:23:51ZengMDPI AGBiomolecules2218-273X2023-02-0113234310.3390/biom13020343An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT ImagesLisa M. Duff0Andrew F. Scarsbrook1Nishant Ravikumar2Russell Frood3Gijs D. van Praagh4Sarah L. Mackie5Marc A. Bailey6Jason M. Tarkin7Justin C. Mason8Kornelis S. M. van der Geest9Riemer H. J. A. Slart10Ann W. Morgan11Charalampos Tsoumpas12School of Medicine, University of Leeds, Leeds LS2 9JT, UKSchool of Medicine, University of Leeds, Leeds LS2 9JT, UKSchool of Medicine, University of Leeds, Leeds LS2 9JT, UKSchool of Medicine, University of Leeds, Leeds LS2 9JT, UKDepartment of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The NetherlandsSchool of Medicine, University of Leeds, Leeds LS2 9JT, UKSchool of Medicine, University of Leeds, Leeds LS2 9JT, UKDivision of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, UKNational Heart and Lung Institute, Imperial College London, London SW3 6LY, UKDepartment of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The NetherlandsDepartment of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The NetherlandsSchool of Medicine, University of Leeds, Leeds LS2 9JT, UKSchool of Medicine, University of Leeds, Leeds LS2 9JT, UKThe aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were constructed: A—RFs with high diagnostic utility removing highly correlated RFs; B used principal component analysis (PCA); C—Random Forest intrinsic feature selection. The diagnostic utility was evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across training, test and external validation datasets. Good diagnostic performance achieved across several multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be used to build an automated clinical decision tool to facilitate objective and standardized assessment regardless of observer experience.https://www.mdpi.com/2218-273X/13/2/343aortitisradiomicsmachine learningconvolutional neural networkpositron emission tomography/computed tomography
spellingShingle Lisa M. Duff
Andrew F. Scarsbrook
Nishant Ravikumar
Russell Frood
Gijs D. van Praagh
Sarah L. Mackie
Marc A. Bailey
Jason M. Tarkin
Justin C. Mason
Kornelis S. M. van der Geest
Riemer H. J. A. Slart
Ann W. Morgan
Charalampos Tsoumpas
An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
Biomolecules
aortitis
radiomics
machine learning
convolutional neural network
positron emission tomography/computed tomography
title An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
title_full An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
title_fullStr An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
title_full_unstemmed An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
title_short An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
title_sort automated method for artifical intelligence assisted diagnosis of active aortitis using radiomic analysis of fdg pet ct images
topic aortitis
radiomics
machine learning
convolutional neural network
positron emission tomography/computed tomography
url https://www.mdpi.com/2218-273X/13/2/343
work_keys_str_mv AT lisamduff anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT andrewfscarsbrook anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT nishantravikumar anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT russellfrood anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT gijsdvanpraagh anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT sarahlmackie anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT marcabailey anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT jasonmtarkin anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT justincmason anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT kornelissmvandergeest anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT riemerhjaslart anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT annwmorgan anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT charalampostsoumpas anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT lisamduff automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT andrewfscarsbrook automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT nishantravikumar automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT russellfrood automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT gijsdvanpraagh automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT sarahlmackie automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT marcabailey automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT jasonmtarkin automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT justincmason automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT kornelissmvandergeest automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT riemerhjaslart automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT annwmorgan automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT charalampostsoumpas automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages