Using matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling in order to predict clinical outcomes of patients with heart failure

Abstract Background Current risk prediction models in heart failure (HF) including clinical characteristics and biomarkers only have moderate predictive value. The aim of this study was to use matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling to determine if a combin...

Full description

Bibliographic Details
Main Authors: Thong Huy Cao, Donald J. L. Jones, Paulene A. Quinn, Daniel Chu Siong Chan, Narayan Hafid, Helen M. Parry, Mohapradeep Mohan, Jatinderpal K. Sandhu, Stefan D. Anker, John G. Cleland, Kenneth Dickstein, Gerasimos Filippatos, Hans L. Hillege, Marco Metra, Piotr Ponikowski, Nilesh J. Samani, Dirk J. Van Veldhuisen, Faiez Zannad, Aeilko H. Zwinderman, Adriaan A. Voors, Chim C. Lang, Leong L. Ng
Format: Article
Language:English
Published: BMC 2018-11-01
Series:Clinical Proteomics
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12014-018-9213-1
_version_ 1818577023029739520
author Thong Huy Cao
Donald J. L. Jones
Paulene A. Quinn
Daniel Chu Siong Chan
Narayan Hafid
Helen M. Parry
Mohapradeep Mohan
Jatinderpal K. Sandhu
Stefan D. Anker
John G. Cleland
Kenneth Dickstein
Gerasimos Filippatos
Hans L. Hillege
Marco Metra
Piotr Ponikowski
Nilesh J. Samani
Dirk J. Van Veldhuisen
Faiez Zannad
Aeilko H. Zwinderman
Adriaan A. Voors
Chim C. Lang
Leong L. Ng
author_facet Thong Huy Cao
Donald J. L. Jones
Paulene A. Quinn
Daniel Chu Siong Chan
Narayan Hafid
Helen M. Parry
Mohapradeep Mohan
Jatinderpal K. Sandhu
Stefan D. Anker
John G. Cleland
Kenneth Dickstein
Gerasimos Filippatos
Hans L. Hillege
Marco Metra
Piotr Ponikowski
Nilesh J. Samani
Dirk J. Van Veldhuisen
Faiez Zannad
Aeilko H. Zwinderman
Adriaan A. Voors
Chim C. Lang
Leong L. Ng
author_sort Thong Huy Cao
collection DOAJ
description Abstract Background Current risk prediction models in heart failure (HF) including clinical characteristics and biomarkers only have moderate predictive value. The aim of this study was to use matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling to determine if a combination of peptides identified with MALDI-MS will better predict clinical outcomes of patients with HF. Methods A cohort of 100 patients with HF were recruited in the biomarker discovery phase (50 patients who died or had a HF hospital admission vs. 50 patients who did not have an event). The peptide extraction from plasma samples was performed using reversed phase C18. Then samples were analysed using MALDI-MS. A multiple peptide biomarker model was discovered that was able to predict clinical outcomes for patients with HF. Finally, this model was validated in an independent cohort with 100 patients with HF. Results After normalisation and alignment of all the processed spectra, a total of 11,389 peptides (m/z) were detected using MALDI-MS. A multiple biomarker model was developed from 14 plasma peptides that was able to predict clinical outcomes in HF patients with an area under the receiver operating characteristic curve (AUC) of 1.000 (p = 0.0005). This model was validated in an independent cohort with 100 HF patients that yielded an AUC of 0.817 (p = 0.0005) in the biomarker validation phase. Addition of this model to the BIOSTAT risk prediction model increased the predictive probability for clinical outcomes of HF from an AUC value of 0.643 to an AUC of 0.823 (p = 0.0021). Moreover, using the prediction model of fourteen peptides and the composite model of the multiple biomarker of fourteen peptides with the BIOSTAT risk prediction model achieved a better predictive probability of time-to-event in prediction of clinical events in patients with HF (p = 0.0005). Conclusions The results obtained in this study suggest that a cluster of plasma peptides using MALDI-MS can reliably predict clinical outcomes in HF that may help enable precision medicine in HF.
first_indexed 2024-12-16T06:23:19Z
format Article
id doaj.art-7d848e9aa7b4408487993da9ac338a8b
institution Directory Open Access Journal
issn 1542-6416
1559-0275
language English
last_indexed 2024-12-16T06:23:19Z
publishDate 2018-11-01
publisher BMC
record_format Article
series Clinical Proteomics
spelling doaj.art-7d848e9aa7b4408487993da9ac338a8b2022-12-21T22:41:04ZengBMCClinical Proteomics1542-64161559-02752018-11-011511910.1186/s12014-018-9213-1Using matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling in order to predict clinical outcomes of patients with heart failureThong Huy Cao0Donald J. L. Jones1Paulene A. Quinn2Daniel Chu Siong Chan3Narayan Hafid4Helen M. Parry5Mohapradeep Mohan6Jatinderpal K. Sandhu7Stefan D. Anker8John G. Cleland9Kenneth Dickstein10Gerasimos Filippatos11Hans L. Hillege12Marco Metra13Piotr Ponikowski14Nilesh J. Samani15Dirk J. Van Veldhuisen16Faiez Zannad17Aeilko H. Zwinderman18Adriaan A. Voors19Chim C. Lang20Leong L. Ng21Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalDepartment of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalDepartment of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalDepartment of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalDepartment of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalDivision of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of DundeeDivision of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of DundeeDepartment of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalDivision of Cardiology and Metabolism, Department of Cardiology (CVK), and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin BerlinRobertson Centre for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow Royal InfirmaryUniversity of Bergen, Stavanger University HospitalDepartment of Cardiology, Heart Failure Unit, Athens University Hospital Attikon, School of Medicine, National and Kapodistrian University of AthensDepartment of Cardiology, University of GroningenDepartment of Medical and Surgical Specialties, Radiological Sciences and Public Health, Institute of Cardiology, University of BresciaDepartment of Heart Diseases, Wroclaw Medical UniversityDepartment of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalDepartment of Cardiology, University of GroningenInserm CIC 1433, Université de Lorrain, CHU de NancyNational Heart Centre SingaporeDepartment of Cardiology, University of GroningenDivision of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of DundeeDepartment of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalAbstract Background Current risk prediction models in heart failure (HF) including clinical characteristics and biomarkers only have moderate predictive value. The aim of this study was to use matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling to determine if a combination of peptides identified with MALDI-MS will better predict clinical outcomes of patients with HF. Methods A cohort of 100 patients with HF were recruited in the biomarker discovery phase (50 patients who died or had a HF hospital admission vs. 50 patients who did not have an event). The peptide extraction from plasma samples was performed using reversed phase C18. Then samples were analysed using MALDI-MS. A multiple peptide biomarker model was discovered that was able to predict clinical outcomes for patients with HF. Finally, this model was validated in an independent cohort with 100 patients with HF. Results After normalisation and alignment of all the processed spectra, a total of 11,389 peptides (m/z) were detected using MALDI-MS. A multiple biomarker model was developed from 14 plasma peptides that was able to predict clinical outcomes in HF patients with an area under the receiver operating characteristic curve (AUC) of 1.000 (p = 0.0005). This model was validated in an independent cohort with 100 HF patients that yielded an AUC of 0.817 (p = 0.0005) in the biomarker validation phase. Addition of this model to the BIOSTAT risk prediction model increased the predictive probability for clinical outcomes of HF from an AUC value of 0.643 to an AUC of 0.823 (p = 0.0021). Moreover, using the prediction model of fourteen peptides and the composite model of the multiple biomarker of fourteen peptides with the BIOSTAT risk prediction model achieved a better predictive probability of time-to-event in prediction of clinical events in patients with HF (p = 0.0005). Conclusions The results obtained in this study suggest that a cluster of plasma peptides using MALDI-MS can reliably predict clinical outcomes in HF that may help enable precision medicine in HF.http://link.springer.com/article/10.1186/s12014-018-9213-1MALDI-MSHeart failureBiomarkerClinical outcomeProteomics
spellingShingle Thong Huy Cao
Donald J. L. Jones
Paulene A. Quinn
Daniel Chu Siong Chan
Narayan Hafid
Helen M. Parry
Mohapradeep Mohan
Jatinderpal K. Sandhu
Stefan D. Anker
John G. Cleland
Kenneth Dickstein
Gerasimos Filippatos
Hans L. Hillege
Marco Metra
Piotr Ponikowski
Nilesh J. Samani
Dirk J. Van Veldhuisen
Faiez Zannad
Aeilko H. Zwinderman
Adriaan A. Voors
Chim C. Lang
Leong L. Ng
Using matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling in order to predict clinical outcomes of patients with heart failure
Clinical Proteomics
MALDI-MS
Heart failure
Biomarker
Clinical outcome
Proteomics
title Using matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling in order to predict clinical outcomes of patients with heart failure
title_full Using matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling in order to predict clinical outcomes of patients with heart failure
title_fullStr Using matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling in order to predict clinical outcomes of patients with heart failure
title_full_unstemmed Using matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling in order to predict clinical outcomes of patients with heart failure
title_short Using matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling in order to predict clinical outcomes of patients with heart failure
title_sort using matrix assisted laser desorption ionisation mass spectrometry maldi ms profiling in order to predict clinical outcomes of patients with heart failure
topic MALDI-MS
Heart failure
Biomarker
Clinical outcome
Proteomics
url http://link.springer.com/article/10.1186/s12014-018-9213-1
work_keys_str_mv AT thonghuycao usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT donaldjljones usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT pauleneaquinn usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT danielchusiongchan usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT narayanhafid usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT helenmparry usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT mohapradeepmohan usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT jatinderpalksandhu usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT stefandanker usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT johngcleland usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT kennethdickstein usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT gerasimosfilippatos usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT hanslhillege usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT marcometra usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT piotrponikowski usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT nileshjsamani usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT dirkjvanveldhuisen usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT faiezzannad usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT aeilkohzwinderman usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT adriaanavoors usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT chimclang usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure
AT leonglng usingmatrixassistedlaserdesorptionionisationmassspectrometrymaldimsprofilinginordertopredictclinicaloutcomesofpatientswithheartfailure