Comprehensive Analysis of a High-Power Density Phase-Shift Full Bridge Converter Highlighting the Effects of the Parasitic Capacitances
A phase-shift full bridge converter is analyzed in detail in continuous conduction mode for one switching cycle for both the leading and lagging legs of the primary bridge. The objective of the study is to determine how the stray capacitance of the transformer, and the capacitances of the diodes in...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/13/6/1439 |
Summary: | A phase-shift full bridge converter is analyzed in detail in continuous conduction mode for one switching cycle for both the leading and lagging legs of the primary bridge. The objective of the study is to determine how the stray capacitance of the transformer, and the capacitances of the diodes in the bridge rectifier affect the converter functionality. Starting from some experimental results, Laplace equivalent circuit models and describing equations are derived for each significant time interval during the switching cycle and are validated through simulations and experimental measurements. The resulting equations are of great interest in the high-power density domain because they can be used to design a clamping circuit for the output rectifier bridge accurately. |
---|---|
ISSN: | 1996-1073 |