Modelling Multi-Mode Resource-Costrainted Flow Shop Scheduling Problem

In the scheduling problems, it is commonly assumed that processing times are fixed and known. In the literature of project scheduling emphasizes that the time of each activity/operation can be multi-mode and by assigning more resources, the activity time can be reduced. In these problems, in additio...

Full description

Bibliographic Details
Main Authors: Mehdi Yazdani, Bahman Naderi
Format: Article
Language:fas
Published: Allameh Tabataba'i University Press 2017-12-01
Series:Muṭāli̒āt-i Mudīriyyat-i Ṣan̒atī
Subjects:
Online Access:https://jims.atu.ac.ir/article_8120_c099f1b2bcada387b8e18b03c13a4f31.pdf
Description
Summary:In the scheduling problems, it is commonly assumed that processing times are fixed and known. In the literature of project scheduling emphasizes that the time of each activity/operation can be multi-mode and by assigning more resources, the activity time can be reduced. In these problems, in addition to activity scheduling, allocation of available limited resources to the activities should also be carried out. This assumption that processing time of activities is fixed is a weakness in scheduling literature. This paper develops the classic problem flow shop scheduling to multi-mode resource-cosntrainted flow shop scheduling problem. This paper discusses comprehensively about mathematical modeling. In this regard, two mixed integer linear programming models with two differnet concepts are presented. The first model is location-based model and the second is sequence-based. The performance of the models are evaluated by comparing their size and computational complexities. In the size complexity, the first model requires more variables but less constraints than second Model. In the computational complexity, the first model significantly outperforms than the second Model. Also, the first model, besides solving more problems as optimally, requires less time to solve than the second model
ISSN:2251-8029
2476-602X