Summary: | After 25 years, “Ackerman’s conundrum”, namely, the distinction of benign from malignant Spitz neoplasms, remains challenging. Genomic studies have shown that most Spitz tumors harbor tyrosine and serine/threonine kinase fusions, including <i>ALK</i>, <i>ROS1</i>, <i>NTRK1</i>, <i>NTRK2</i>, <i>NTRK3</i>, <i>BRAF</i> and <i>MAP3K8</i>, or some mutations, such as <i>HRAS</i> and <i>MAP3K8</i>. These chromosomal abnormalities act as drivers, initiating the oncogenetic process and conferring basic bio-morphological features. Most Spitz tumors show no additional genomic alterations or few ones; others harbor a variable number of mutations, capable of conferring characteristics related to clinical behavior, including <i>CDKN2A</i> deletion and <i>TERT</i>-p mutation. Since the accumulation of mutations is gradual and progressive, tumors appear to form a bio-morphologic spectrum, in which they show a progressive increase of clinical risk and histological atypia. In this context, a binary classification Spitz nevus-melanoma appears as no longer adequate, not corresponding to the real genomic substrate of lesions. A ternary classification Spitz nevus-Spitz melanocytoma-Spitz melanoma is more adherent to the real neoplastic pathway, but some cases with intermediate ambiguous features remain difficult to diagnose. A prognostic stratification of Spitz tumors, based on the morphologic and genomic characteristics, as a complement to the diagnosis, may contribute to better treatment plans for patients.
|