Summary: | Abstract Classical strings propagating in AdS 3 × S 3 × T 4 supported with Neveu-Schwarz-Neveu-Schwarz flux are described by a Wess-Zumino-Witten model. In this note, we study the emergence of their semiclassical SU(2) spectrally flowed sectors as the Landau-Lifshitz limit of the underlying quantum spin chain. We consider the propagator in the coherent state picture, and find that the time interval is discretized proportionally to the lattice spacing. In the Landau-Lifshitz limit, where both time and space become continuous, we derive a path integral representation of the propagator for each spectrally flowed sector. We prove that the arbitrariness of the global phase of coherent states is mapped to the gauge freedom of the B-field in the classical action. We show that higher order corrections in the Landau-Lifshitz limit are suppressed by inverse powers of the ’t Hooft coupling.
|