Numerical Simulation of Blast Loaded CFRP Retrofitted Steel Plates

This paper reports on the results of a numerical study to simulate the response of carbon fibre reinforced polymer (CFRP) retrofitted steel plates to applied blast loads using finite element software, LS-DYNA. The results of the simulation were validated against plate response and magnitude of defor...

Full description

Bibliographic Details
Main Authors: Shuaib Mujtaba M., Chung Kim Yuen Steeve, Nurick Gerald N.
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2021/16/matecconf_sacam21_00038.pdf
Description
Summary:This paper reports on the results of a numerical study to simulate the response of carbon fibre reinforced polymer (CFRP) retrofitted steel plates to applied blast loads using finite element software, LS-DYNA. The results of the simulation were validated against plate response and magnitude of deformation obtained from previous experiments. The uniform blast load was generated in the experiment by detonating a cylindrical charge down the end of a square tube. The finite element code LS-DYNA was used to simulate the structural response of the respective blast structures. For the numerical model, the blast load was simulated using the mapping feature available in LS-DYNA for the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) elements which significantly reduced the size of the air domain in the model. The simulations showed a satisfactory correlation with the experiments for the blast results and post-failure deformations that occurred in CFRP retrofitted steel plates.
ISSN:2261-236X