Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary

In the current paper, we study a Galerkin-Petrov method for a parabolic equations of higher order in domain with a moving boundary. Asymptotic estimates for the convergence rate of approximate solutions are obtained.

Bibliographic Details
Main Authors: Polina Vitalievna Vinogradova, Anatoly Georgievich Zarubin, Aleksandr Markovich Samusenko
Format: Article
Language:Russian
Published: Institute of Computer Science 2013-02-01
Series:Компьютерные исследования и моделирование
Subjects:
Online Access:http://crm.ics.org.ru/uploads/crmissues/crm_2013_1/01_VinogradovaPV.pdf
_version_ 1819027334768885760
author Polina Vitalievna Vinogradova
Anatoly Georgievich Zarubin
Aleksandr Markovich Samusenko
author_facet Polina Vitalievna Vinogradova
Anatoly Georgievich Zarubin
Aleksandr Markovich Samusenko
author_sort Polina Vitalievna Vinogradova
collection DOAJ
description In the current paper, we study a Galerkin-Petrov method for a parabolic equations of higher order in domain with a moving boundary. Asymptotic estimates for the convergence rate of approximate solutions are obtained.
first_indexed 2024-12-21T05:40:49Z
format Article
id doaj.art-7dbfd844dbac464a8fba0e4a6d6d9ca4
institution Directory Open Access Journal
issn 2076-7633
2077-6853
language Russian
last_indexed 2024-12-21T05:40:49Z
publishDate 2013-02-01
publisher Institute of Computer Science
record_format Article
series Компьютерные исследования и моделирование
spelling doaj.art-7dbfd844dbac464a8fba0e4a6d6d9ca42022-12-21T19:14:16ZrusInstitute of Computer ScienceКомпьютерные исследования и моделирование2076-76332077-68532013-02-015131010.20537/2076-7633-2013-5-1-3-101985Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundaryPolina Vitalievna VinogradovaAnatoly Georgievich ZarubinAleksandr Markovich SamusenkoIn the current paper, we study a Galerkin-Petrov method for a parabolic equations of higher order in domain with a moving boundary. Asymptotic estimates for the convergence rate of approximate solutions are obtained.http://crm.ics.org.ru/uploads/crmissues/crm_2013_1/01_VinogradovaPV.pdfinitial boundary value problemparabolic equationGalerkin–Petrov methodconvergenceconvergence rate
spellingShingle Polina Vitalievna Vinogradova
Anatoly Georgievich Zarubin
Aleksandr Markovich Samusenko
Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
Компьютерные исследования и моделирование
initial boundary value problem
parabolic equation
Galerkin–Petrov method
convergence
convergence rate
title Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
title_full Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
title_fullStr Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
title_full_unstemmed Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
title_short Galerkin-Petrov method for one-dimensional parabolic equations of higher order in domain with a moving boundary
title_sort galerkin petrov method for one dimensional parabolic equations of higher order in domain with a moving boundary
topic initial boundary value problem
parabolic equation
Galerkin–Petrov method
convergence
convergence rate
url http://crm.ics.org.ru/uploads/crmissues/crm_2013_1/01_VinogradovaPV.pdf
work_keys_str_mv AT polinavitalievnavinogradova galerkinpetrovmethodforonedimensionalparabolicequationsofhigherorderindomainwithamovingboundary
AT anatolygeorgievichzarubin galerkinpetrovmethodforonedimensionalparabolicequationsofhigherorderindomainwithamovingboundary
AT aleksandrmarkovichsamusenko galerkinpetrovmethodforonedimensionalparabolicequationsofhigherorderindomainwithamovingboundary