ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons

Mitochondrial intermembrane space proteins CHCHD2 and CHCHD10 have roles in motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and axonal neuropathy and in Parkinson's disease. They form a complex of unknown function. Here we address the importance of these two...

Full description

Bibliographic Details
Main Authors: Sandra Harjuhaahto, Tiina S. Rasila, Svetlana M. Molchanova, Rosa Woldegebriel, Jouni Kvist, Svetlana Konovalova, Markus T. Sainio, Jana Pennonen, Rubén Torregrosa-Muñumer, Hazem Ibrahim, Timo Otonkoski, Tomi Taira, Emil Ylikallio, Henna Tyynismaa
Format: Article
Language:English
Published: Elsevier 2020-07-01
Series:Neurobiology of Disease
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0969996120302151
_version_ 1831547766391701504
author Sandra Harjuhaahto
Tiina S. Rasila
Svetlana M. Molchanova
Rosa Woldegebriel
Jouni Kvist
Svetlana Konovalova
Markus T. Sainio
Jana Pennonen
Rubén Torregrosa-Muñumer
Hazem Ibrahim
Timo Otonkoski
Tomi Taira
Emil Ylikallio
Henna Tyynismaa
author_facet Sandra Harjuhaahto
Tiina S. Rasila
Svetlana M. Molchanova
Rosa Woldegebriel
Jouni Kvist
Svetlana Konovalova
Markus T. Sainio
Jana Pennonen
Rubén Torregrosa-Muñumer
Hazem Ibrahim
Timo Otonkoski
Tomi Taira
Emil Ylikallio
Henna Tyynismaa
author_sort Sandra Harjuhaahto
collection DOAJ
description Mitochondrial intermembrane space proteins CHCHD2 and CHCHD10 have roles in motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and axonal neuropathy and in Parkinson's disease. They form a complex of unknown function. Here we address the importance of these two proteins in human motor neurons. We show that gene edited human induced pluripotent stem cells (iPSC) lacking either CHCHD2 or CHCHD10 are viable and can be differentiated into functional motor neurons that fire spontaneous and evoked action potentials. Mitochondria in knockout iPSC and motor neurons sustain ultrastructure but show increased proton leakage and respiration, and reciprocal compensatory increases in CHCHD2 or CHCHD10. Knockout motor neurons have largely overlapping transcriptome profiles compared to isogenic control line, in particular for synaptic gene expression. Our results show that the absence of either CHCHD2 or CHCHD10 alters mitochondrial respiration in human motor neurons, inducing similar compensatory responses. Thus, pathogenic mechanisms may involve loss of synaptic function resulting from defective energy metabolism.
first_indexed 2024-12-17T02:08:48Z
format Article
id doaj.art-7dd3bc2f74c846f5b352a344121de51b
institution Directory Open Access Journal
issn 1095-953X
language English
last_indexed 2024-12-17T02:08:48Z
publishDate 2020-07-01
publisher Elsevier
record_format Article
series Neurobiology of Disease
spelling doaj.art-7dd3bc2f74c846f5b352a344121de51b2022-12-21T22:07:38ZengElsevierNeurobiology of Disease1095-953X2020-07-01141104940ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neuronsSandra Harjuhaahto0Tiina S. Rasila1Svetlana M. Molchanova2Rosa Woldegebriel3Jouni Kvist4Svetlana Konovalova5Markus T. Sainio6Jana Pennonen7Rubén Torregrosa-Muñumer8Hazem Ibrahim9Timo Otonkoski10Tomi Taira11Emil Ylikallio12Henna Tyynismaa13Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandFaculty of Veterinary Medicine, Department of Veterinary Biosciences for Electrophysiology, University of Helsinki, Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, Helsinki University Hospital, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland; Corresponding author at: Biomedicum Helsinki, r.C525b, Haartmaninkatu 8, 00290 Helsinki, Finland.Mitochondrial intermembrane space proteins CHCHD2 and CHCHD10 have roles in motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and axonal neuropathy and in Parkinson's disease. They form a complex of unknown function. Here we address the importance of these two proteins in human motor neurons. We show that gene edited human induced pluripotent stem cells (iPSC) lacking either CHCHD2 or CHCHD10 are viable and can be differentiated into functional motor neurons that fire spontaneous and evoked action potentials. Mitochondria in knockout iPSC and motor neurons sustain ultrastructure but show increased proton leakage and respiration, and reciprocal compensatory increases in CHCHD2 or CHCHD10. Knockout motor neurons have largely overlapping transcriptome profiles compared to isogenic control line, in particular for synaptic gene expression. Our results show that the absence of either CHCHD2 or CHCHD10 alters mitochondrial respiration in human motor neurons, inducing similar compensatory responses. Thus, pathogenic mechanisms may involve loss of synaptic function resulting from defective energy metabolism.http://www.sciencedirect.com/science/article/pii/S0969996120302151CHCHD2CHCHD10Induced pluripotent stem cellMotor neuron differentiationCMT2SMAJ
spellingShingle Sandra Harjuhaahto
Tiina S. Rasila
Svetlana M. Molchanova
Rosa Woldegebriel
Jouni Kvist
Svetlana Konovalova
Markus T. Sainio
Jana Pennonen
Rubén Torregrosa-Muñumer
Hazem Ibrahim
Timo Otonkoski
Tomi Taira
Emil Ylikallio
Henna Tyynismaa
ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons
Neurobiology of Disease
CHCHD2
CHCHD10
Induced pluripotent stem cell
Motor neuron differentiation
CMT2
SMAJ
title ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons
title_full ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons
title_fullStr ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons
title_full_unstemmed ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons
title_short ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons
title_sort als and parkinson s disease genes chchd10 and chchd2 modify synaptic transcriptomes in human ipsc derived motor neurons
topic CHCHD2
CHCHD10
Induced pluripotent stem cell
Motor neuron differentiation
CMT2
SMAJ
url http://www.sciencedirect.com/science/article/pii/S0969996120302151
work_keys_str_mv AT sandraharjuhaahto alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT tiinasrasila alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT svetlanammolchanova alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT rosawoldegebriel alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT jounikvist alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT svetlanakonovalova alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT markustsainio alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT janapennonen alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT rubentorregrosamunumer alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT hazemibrahim alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT timootonkoski alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT tomitaira alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT emilylikallio alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons
AT hennatyynismaa alsandparkinsonsdiseasegeneschchd10andchchd2modifysynaptictranscriptomesinhumanipscderivedmotorneurons