Parameter Estimation in Nonlinear Mixed Effect Models Using saemix, an R Implementation of the SAEM Algorithm

The saemix package for R provides maximum likelihood estimates of parameters in nonlinear mixed effect models, using a modern and efficient estimation algorithm, the stochastic approximation expectation maximisation (SAEM) algorithm. In the present paper we describe the main features of the package,...

Full description

Bibliographic Details
Main Authors: Emmanuelle Comets, Audrey Lavenu, Marc Lavielle
Format: Article
Language:English
Published: Foundation for Open Access Statistics 2017-08-01
Series:Journal of Statistical Software
Subjects:
Online Access:https://www.jstatsoft.org/index.php/jss/article/view/2399
_version_ 1818243361476182016
author Emmanuelle Comets
Audrey Lavenu
Marc Lavielle
author_facet Emmanuelle Comets
Audrey Lavenu
Marc Lavielle
author_sort Emmanuelle Comets
collection DOAJ
description The saemix package for R provides maximum likelihood estimates of parameters in nonlinear mixed effect models, using a modern and efficient estimation algorithm, the stochastic approximation expectation maximisation (SAEM) algorithm. In the present paper we describe the main features of the package, and apply it to several examples to illustrate its use. Making use of S4 classes and methods to provide user-friendly interaction, this package provides a new estimation tool to the R community.
first_indexed 2024-12-12T13:59:54Z
format Article
id doaj.art-7dd46b7f783c40b3a6bf433a511efdce
institution Directory Open Access Journal
issn 1548-7660
language English
last_indexed 2024-12-12T13:59:54Z
publishDate 2017-08-01
publisher Foundation for Open Access Statistics
record_format Article
series Journal of Statistical Software
spelling doaj.art-7dd46b7f783c40b3a6bf433a511efdce2022-12-22T00:22:21ZengFoundation for Open Access StatisticsJournal of Statistical Software1548-76602017-08-0180114110.18637/jss.v080.i031139Parameter Estimation in Nonlinear Mixed Effect Models Using saemix, an R Implementation of the SAEM AlgorithmEmmanuelle CometsAudrey LavenuMarc LavielleThe saemix package for R provides maximum likelihood estimates of parameters in nonlinear mixed effect models, using a modern and efficient estimation algorithm, the stochastic approximation expectation maximisation (SAEM) algorithm. In the present paper we describe the main features of the package, and apply it to several examples to illustrate its use. Making use of S4 classes and methods to provide user-friendly interaction, this package provides a new estimation tool to the R community.https://www.jstatsoft.org/index.php/jss/article/view/2399nonlinear mixed effect modelsstochastic approximation EM algorithmpharmacokineticspharmacodynamicstheophyllineorange treeS4 classes
spellingShingle Emmanuelle Comets
Audrey Lavenu
Marc Lavielle
Parameter Estimation in Nonlinear Mixed Effect Models Using saemix, an R Implementation of the SAEM Algorithm
Journal of Statistical Software
nonlinear mixed effect models
stochastic approximation EM algorithm
pharmacokinetics
pharmacodynamics
theophylline
orange tree
S4 classes
title Parameter Estimation in Nonlinear Mixed Effect Models Using saemix, an R Implementation of the SAEM Algorithm
title_full Parameter Estimation in Nonlinear Mixed Effect Models Using saemix, an R Implementation of the SAEM Algorithm
title_fullStr Parameter Estimation in Nonlinear Mixed Effect Models Using saemix, an R Implementation of the SAEM Algorithm
title_full_unstemmed Parameter Estimation in Nonlinear Mixed Effect Models Using saemix, an R Implementation of the SAEM Algorithm
title_short Parameter Estimation in Nonlinear Mixed Effect Models Using saemix, an R Implementation of the SAEM Algorithm
title_sort parameter estimation in nonlinear mixed effect models using saemix an r implementation of the saem algorithm
topic nonlinear mixed effect models
stochastic approximation EM algorithm
pharmacokinetics
pharmacodynamics
theophylline
orange tree
S4 classes
url https://www.jstatsoft.org/index.php/jss/article/view/2399
work_keys_str_mv AT emmanuellecomets parameterestimationinnonlinearmixedeffectmodelsusingsaemixanrimplementationofthesaemalgorithm
AT audreylavenu parameterestimationinnonlinearmixedeffectmodelsusingsaemixanrimplementationofthesaemalgorithm
AT marclavielle parameterestimationinnonlinearmixedeffectmodelsusingsaemixanrimplementationofthesaemalgorithm