Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat Pups
Since there is no known cure for autism spectrum disorder (ASD), its incidence rate is on the rise. Common comorbidities like gastrointestinal problems are observed as common signs of ASD and play a major role in controlling social and behavioral symptoms. Although there is a lot of interest in diet...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-06-01
|
Series: | Metabolites |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-1989/13/6/738 |
_version_ | 1797593521036722176 |
---|---|
author | Sana Razhan M. Alsubaiei Hanan A. Alfawaz Ramesa Shafi Bhat Afaf El-Ansary |
author_facet | Sana Razhan M. Alsubaiei Hanan A. Alfawaz Ramesa Shafi Bhat Afaf El-Ansary |
author_sort | Sana Razhan M. Alsubaiei |
collection | DOAJ |
description | Since there is no known cure for autism spectrum disorder (ASD), its incidence rate is on the rise. Common comorbidities like gastrointestinal problems are observed as common signs of ASD and play a major role in controlling social and behavioral symptoms. Although there is a lot of interest in dietary treatments, no harmony exists with regard to the ideal nutritional therapy. To better direct prevention and intervention measures for ASD, the identification of risk and protective factors is required. Through the use of a rat model, our study aims to assess the possible danger of exposure to neurotoxic doses of propionic acid (PPA) and the nutritional protective effects of prebiotics and probiotics. Here, we conducted a biochemical assessment of the effects of dietary supplement therapy in the PPA model of autism. We used 36 male Sprague Dawley albino rat pups divided into six groups. Standard food and drink were given to the control group. The PPA-induced ASD model was the second group; it was fed a conventional diet for 27 days before receiving 250 mg/kg of PPA orally for three days. The four other groups were given 3 mL/kg of yoghurt daily, 400 mg/Kg of artichokes daily, 50 mg/kg of luteolin daily and <i>Lacticaseibacillus rhamnosus</i> GG at 0.2 mL daily for 27 days before being given PPA (250 mg/kg BW) for three days along with their normal diet. All groups had their brain homogenates tested for biochemical markers, which included gamma-aminobutyric acid (GABA), glutathione peroxidase 1 (GPX1), glutathione (GSH), interleukin 6 (IL-6), interleukin 10 (IL-10) and tumor necrosis factor-alpha (TNF). When compared with the control group, the PPA-induced model presented increased oxidative stress and neuroinflammation but groups treated with all four dietary therapies presented improvements in biochemical characteristics for oxidative stress and neuroinflammation. As all of the therapies show sufficient anti-inflammatory and antioxidant effects, they can be used as a useful dietary component to help prevent ASD. |
first_indexed | 2024-03-11T02:10:28Z |
format | Article |
id | doaj.art-7dd8a61f888842fc969b3de11814d8f5 |
institution | Directory Open Access Journal |
issn | 2218-1989 |
language | English |
last_indexed | 2024-03-11T02:10:28Z |
publishDate | 2023-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Metabolites |
spelling | doaj.art-7dd8a61f888842fc969b3de11814d8f52023-11-18T11:35:00ZengMDPI AGMetabolites2218-19892023-06-0113673810.3390/metabo13060738Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat PupsSana Razhan M. Alsubaiei0Hanan A. Alfawaz1Ramesa Shafi Bhat2Afaf El-Ansary3Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11495, Saudi ArabiaDepartment of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11495, Saudi ArabiaBiochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi ArabiaCentral Research Laboratory, Female Campus, King Saud University, Riyadh 11495, Saudi ArabiaSince there is no known cure for autism spectrum disorder (ASD), its incidence rate is on the rise. Common comorbidities like gastrointestinal problems are observed as common signs of ASD and play a major role in controlling social and behavioral symptoms. Although there is a lot of interest in dietary treatments, no harmony exists with regard to the ideal nutritional therapy. To better direct prevention and intervention measures for ASD, the identification of risk and protective factors is required. Through the use of a rat model, our study aims to assess the possible danger of exposure to neurotoxic doses of propionic acid (PPA) and the nutritional protective effects of prebiotics and probiotics. Here, we conducted a biochemical assessment of the effects of dietary supplement therapy in the PPA model of autism. We used 36 male Sprague Dawley albino rat pups divided into six groups. Standard food and drink were given to the control group. The PPA-induced ASD model was the second group; it was fed a conventional diet for 27 days before receiving 250 mg/kg of PPA orally for three days. The four other groups were given 3 mL/kg of yoghurt daily, 400 mg/Kg of artichokes daily, 50 mg/kg of luteolin daily and <i>Lacticaseibacillus rhamnosus</i> GG at 0.2 mL daily for 27 days before being given PPA (250 mg/kg BW) for three days along with their normal diet. All groups had their brain homogenates tested for biochemical markers, which included gamma-aminobutyric acid (GABA), glutathione peroxidase 1 (GPX1), glutathione (GSH), interleukin 6 (IL-6), interleukin 10 (IL-10) and tumor necrosis factor-alpha (TNF). When compared with the control group, the PPA-induced model presented increased oxidative stress and neuroinflammation but groups treated with all four dietary therapies presented improvements in biochemical characteristics for oxidative stress and neuroinflammation. As all of the therapies show sufficient anti-inflammatory and antioxidant effects, they can be used as a useful dietary component to help prevent ASD.https://www.mdpi.com/2218-1989/13/6/738autism spectrum disorderpropionic acidprobiotics<i>Lacticaseibacillus rhamnosus</i>artichokesluteolin |
spellingShingle | Sana Razhan M. Alsubaiei Hanan A. Alfawaz Ramesa Shafi Bhat Afaf El-Ansary Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat Pups Metabolites autism spectrum disorder propionic acid probiotics <i>Lacticaseibacillus rhamnosus</i> artichokes luteolin |
title | Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat Pups |
title_full | Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat Pups |
title_fullStr | Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat Pups |
title_full_unstemmed | Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat Pups |
title_short | Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat Pups |
title_sort | nutritional intervention as a complementary neuroprotective approach against propionic acid induced neurotoxicity and associated biochemical autistic features in rat pups |
topic | autism spectrum disorder propionic acid probiotics <i>Lacticaseibacillus rhamnosus</i> artichokes luteolin |
url | https://www.mdpi.com/2218-1989/13/6/738 |
work_keys_str_mv | AT sanarazhanmalsubaiei nutritionalinterventionasacomplementaryneuroprotectiveapproachagainstpropionicacidinducedneurotoxicityandassociatedbiochemicalautisticfeaturesinratpups AT hananaalfawaz nutritionalinterventionasacomplementaryneuroprotectiveapproachagainstpropionicacidinducedneurotoxicityandassociatedbiochemicalautisticfeaturesinratpups AT ramesashafibhat nutritionalinterventionasacomplementaryneuroprotectiveapproachagainstpropionicacidinducedneurotoxicityandassociatedbiochemicalautisticfeaturesinratpups AT afafelansary nutritionalinterventionasacomplementaryneuroprotectiveapproachagainstpropionicacidinducedneurotoxicityandassociatedbiochemicalautisticfeaturesinratpups |