Notes on a General Sequence

Let {rn}n∈𝕅 be a strictly increasing sequence of nonnegative real numbers satisfying the asymptotic formula rn ~ αβn, where α, β are real numbers with α > 0 and β > 1. In this note we prove some limits that connect this sequence to the number e. We also establish some asymptotic formulae and l...

Full description

Bibliographic Details
Main Authors: Farhadian Reza, Jakimczuk Rafael
Format: Article
Language:English
Published: Sciendo 2020-09-01
Series:Annales Mathematicae Silesianae
Subjects:
Online Access:http://www.degruyter.com/view/j/amsil.2020.34.issue-2/amsil-2020-0006/amsil-2020-0006.xml?format=INT
_version_ 1818559015289880576
author Farhadian Reza
Jakimczuk Rafael
author_facet Farhadian Reza
Jakimczuk Rafael
author_sort Farhadian Reza
collection DOAJ
description Let {rn}n∈𝕅 be a strictly increasing sequence of nonnegative real numbers satisfying the asymptotic formula rn ~ αβn, where α, β are real numbers with α > 0 and β > 1. In this note we prove some limits that connect this sequence to the number e. We also establish some asymptotic formulae and limits for the counting function of this sequence. All of the results are applied to some well-known sequences in mathematics.
first_indexed 2024-12-14T00:19:51Z
format Article
id doaj.art-7ddb8c6c39dc4bcca47be5c3aab67bf6
institution Directory Open Access Journal
issn 2391-4238
language English
last_indexed 2024-12-14T00:19:51Z
publishDate 2020-09-01
publisher Sciendo
record_format Article
series Annales Mathematicae Silesianae
spelling doaj.art-7ddb8c6c39dc4bcca47be5c3aab67bf62022-12-21T23:25:17ZengSciendoAnnales Mathematicae Silesianae2391-42382020-09-0134219320210.2478/amsil-2020-0006amsil-2020-0006Notes on a General SequenceFarhadian Reza0Jakimczuk Rafael1Department of Statistics, Lorestan University, KhorramabadIranDivisión Matemática, Universidad Nacional de Luján, Luján, Buenos Aires, RepúblicaArgentinaLet {rn}n∈𝕅 be a strictly increasing sequence of nonnegative real numbers satisfying the asymptotic formula rn ~ αβn, where α, β are real numbers with α > 0 and β > 1. In this note we prove some limits that connect this sequence to the number e. We also establish some asymptotic formulae and limits for the counting function of this sequence. All of the results are applied to some well-known sequences in mathematics.http://www.degruyter.com/view/j/amsil.2020.34.issue-2/amsil-2020-0006/amsil-2020-0006.xml?format=INTgeneral sequenceasymptotic formulaelimit behaviorthe number e97i3011k3111b8340a0511b39
spellingShingle Farhadian Reza
Jakimczuk Rafael
Notes on a General Sequence
Annales Mathematicae Silesianae
general sequence
asymptotic formulae
limit behavior
the number e
97i30
11k31
11b83
40a05
11b39
title Notes on a General Sequence
title_full Notes on a General Sequence
title_fullStr Notes on a General Sequence
title_full_unstemmed Notes on a General Sequence
title_short Notes on a General Sequence
title_sort notes on a general sequence
topic general sequence
asymptotic formulae
limit behavior
the number e
97i30
11k31
11b83
40a05
11b39
url http://www.degruyter.com/view/j/amsil.2020.34.issue-2/amsil-2020-0006/amsil-2020-0006.xml?format=INT
work_keys_str_mv AT farhadianreza notesonageneralsequence
AT jakimczukrafael notesonageneralsequence