Mapping Relation between Contour Error Components of Crankshaft Pin Journal and Axis Position Control Error of Oscillating Grinding Machine

Automatic crankshaft production lines require high reliability and accuracy stability for the oscillating grinding machine. Crankshaft contour error represent the most intuitive data in production field selective inspection. If the mapping relation between the contour error components of the cranksh...

Full description

Bibliographic Details
Main Authors: Xiaoyan Fang, Xiaowei Sheng, Yize Sun, Yang Xu
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/19/6497
Description
Summary:Automatic crankshaft production lines require high reliability and accuracy stability for the oscillating grinding machine. Crankshaft contour error represent the most intuitive data in production field selective inspection. If the mapping relation between the contour error components of the crankshaft pin journal and the axis position control error of the oscillating grinding machine can be found, it would be great significance for the reliability maintenance of the oscillating grinding machine. Firstly, a contour error decomposition method based on ensemble empirical mode decomposition (EEMD) is proposed. Secondly, according to the contour generating principle of the pin journal by oscillating grinding, a calculation method to obtain the effect of the axis position control error of the oscillating grinder on the contour error of the pin journal is proposed. Finally, through the grinding experiments, the error data are acquired and measured to calculate and decompose the contour error by using the proposed methods for obtaining the mapping relation between the crankshaft pin journal contour error and the axis position control error. The conclusions show that the proposed calculation and decomposition methods can obtain the mapping relation between the contour error components of the crankshaft pin journal and the axis position control error of the oscillating grinding machine, which can be used to predict the key functional component performance of the machine tool from the oscillating grinding workpiece contour error.
ISSN:1424-8220