A framework for contextualizing social‐ecological biases in contributory science data

Abstract Contributory science—including citizen and community science—allows scientists to leverage participant‐generated data while providing an opportunity for engaging with local community members. Data yielded by participant‐generated biodiversity platforms allow professional scientists to answe...

Full description

Bibliographic Details
Main Authors: Elizabeth J. Carlen, Cesar O. Estien, Tal Caspi, Deja Perkins, Benjamin R. Goldstein, Samantha E. S. Kreling, Yasmine Hentati, Tyus D. Williams, Lauren A. Stanton, Simone Des Roches, Rebecca F. Johnson, Alison N. Young, Caren B. Cooper, Christopher J. Schell
Format: Article
Language:English
Published: Wiley 2024-04-01
Series:People and Nature
Subjects:
Online Access:https://doi.org/10.1002/pan3.10592
_version_ 1797226559688409088
author Elizabeth J. Carlen
Cesar O. Estien
Tal Caspi
Deja Perkins
Benjamin R. Goldstein
Samantha E. S. Kreling
Yasmine Hentati
Tyus D. Williams
Lauren A. Stanton
Simone Des Roches
Rebecca F. Johnson
Alison N. Young
Caren B. Cooper
Christopher J. Schell
author_facet Elizabeth J. Carlen
Cesar O. Estien
Tal Caspi
Deja Perkins
Benjamin R. Goldstein
Samantha E. S. Kreling
Yasmine Hentati
Tyus D. Williams
Lauren A. Stanton
Simone Des Roches
Rebecca F. Johnson
Alison N. Young
Caren B. Cooper
Christopher J. Schell
author_sort Elizabeth J. Carlen
collection DOAJ
description Abstract Contributory science—including citizen and community science—allows scientists to leverage participant‐generated data while providing an opportunity for engaging with local community members. Data yielded by participant‐generated biodiversity platforms allow professional scientists to answer ecological and evolutionary questions across both geographic and temporal scales, which is incredibly valuable for conservation efforts. The data reported to contributory biodiversity platforms, such as eBird and iNaturalist, can be driven by social and ecological variables, leading to biased data. Though empirical work has highlighted the biases in contributory data, little work has articulated how biases arise in contributory data and the societal consequences of these biases. We present a conceptual framework illustrating how social and ecological variables create bias in contributory science data. In this framework, we present four filters—participation, detectability, sampling and preference—that ultimately shape the type and location of contributory biodiversity data. We leverage this framework to examine data from the largest contributory science platforms—eBird and iNaturalist—in St. Louis, Missouri, the United States, and discuss the potential consequences of biased data. Lastly, we conclude by providing several recommendations for researchers and institutions to move towards a more inclusive field. With these recommendations, we provide opportunities to ameliorate biases in contributory data and an opportunity to practice equitable biodiversity conservation. Read the free Plain Language Summary for this article on the Journal blog.
first_indexed 2024-04-24T14:26:50Z
format Article
id doaj.art-7de92bd2945d4b7db3cdee6ab14ad02c
institution Directory Open Access Journal
issn 2575-8314
language English
last_indexed 2024-04-24T14:26:50Z
publishDate 2024-04-01
publisher Wiley
record_format Article
series People and Nature
spelling doaj.art-7de92bd2945d4b7db3cdee6ab14ad02c2024-04-03T04:30:39ZengWileyPeople and Nature2575-83142024-04-016237739010.1002/pan3.10592A framework for contextualizing social‐ecological biases in contributory science dataElizabeth J. Carlen0Cesar O. Estien1Tal Caspi2Deja Perkins3Benjamin R. Goldstein4Samantha E. S. Kreling5Yasmine Hentati6Tyus D. Williams7Lauren A. Stanton8Simone Des Roches9Rebecca F. Johnson10Alison N. Young11Caren B. Cooper12Christopher J. Schell13Living Earth Collaborative Washington University in St. Louis St. Louis Missouri USADepartment of Environmental Science, Policy, and Management University of California–Berkeley Berkeley California USADepartment of Environmental Science and Policy University of California–Davis Davis California USADepartment of Forestry & Environmental Resources, Center for Geospatial Analytics North Carolina State University Raleigh North Carolina USADepartment of Environmental Science, Policy, and Management University of California–Berkeley Berkeley California USASchool of Environment and Forest Sciences University of Washington Seattle Washington USASchool of Environment and Forest Sciences University of Washington Seattle Washington USADepartment of Environmental Science, Policy, and Management University of California–Berkeley Berkeley California USADepartment of Environmental Science, Policy, and Management University of California–Berkeley Berkeley California USASchool of Aquatic and Fishery Sciences University of Washington Seattle Washington USACenter for Biodiversity and Community Science California Academy of Sciences San Francisco California USACenter for Biodiversity and Community Science California Academy of Sciences San Francisco California USADepartment of Forestry & Environmental Resources, Center for Geospatial Analytics North Carolina State University Raleigh North Carolina USADepartment of Environmental Science, Policy, and Management University of California–Berkeley Berkeley California USAAbstract Contributory science—including citizen and community science—allows scientists to leverage participant‐generated data while providing an opportunity for engaging with local community members. Data yielded by participant‐generated biodiversity platforms allow professional scientists to answer ecological and evolutionary questions across both geographic and temporal scales, which is incredibly valuable for conservation efforts. The data reported to contributory biodiversity platforms, such as eBird and iNaturalist, can be driven by social and ecological variables, leading to biased data. Though empirical work has highlighted the biases in contributory data, little work has articulated how biases arise in contributory data and the societal consequences of these biases. We present a conceptual framework illustrating how social and ecological variables create bias in contributory science data. In this framework, we present four filters—participation, detectability, sampling and preference—that ultimately shape the type and location of contributory biodiversity data. We leverage this framework to examine data from the largest contributory science platforms—eBird and iNaturalist—in St. Louis, Missouri, the United States, and discuss the potential consequences of biased data. Lastly, we conclude by providing several recommendations for researchers and institutions to move towards a more inclusive field. With these recommendations, we provide opportunities to ameliorate biases in contributory data and an opportunity to practice equitable biodiversity conservation. Read the free Plain Language Summary for this article on the Journal blog.https://doi.org/10.1002/pan3.10592biasesbiodiversitycitizen sciencecommunity scienceeBirdiNaturalist
spellingShingle Elizabeth J. Carlen
Cesar O. Estien
Tal Caspi
Deja Perkins
Benjamin R. Goldstein
Samantha E. S. Kreling
Yasmine Hentati
Tyus D. Williams
Lauren A. Stanton
Simone Des Roches
Rebecca F. Johnson
Alison N. Young
Caren B. Cooper
Christopher J. Schell
A framework for contextualizing social‐ecological biases in contributory science data
People and Nature
biases
biodiversity
citizen science
community science
eBird
iNaturalist
title A framework for contextualizing social‐ecological biases in contributory science data
title_full A framework for contextualizing social‐ecological biases in contributory science data
title_fullStr A framework for contextualizing social‐ecological biases in contributory science data
title_full_unstemmed A framework for contextualizing social‐ecological biases in contributory science data
title_short A framework for contextualizing social‐ecological biases in contributory science data
title_sort framework for contextualizing social ecological biases in contributory science data
topic biases
biodiversity
citizen science
community science
eBird
iNaturalist
url https://doi.org/10.1002/pan3.10592
work_keys_str_mv AT elizabethjcarlen aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT cesaroestien aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT talcaspi aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT dejaperkins aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT benjaminrgoldstein aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT samanthaeskreling aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT yasminehentati aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT tyusdwilliams aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT laurenastanton aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT simonedesroches aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT rebeccafjohnson aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT alisonnyoung aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT carenbcooper aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT christopherjschell aframeworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT elizabethjcarlen frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT cesaroestien frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT talcaspi frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT dejaperkins frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT benjaminrgoldstein frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT samanthaeskreling frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT yasminehentati frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT tyusdwilliams frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT laurenastanton frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT simonedesroches frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT rebeccafjohnson frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT alisonnyoung frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT carenbcooper frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata
AT christopherjschell frameworkforcontextualizingsocialecologicalbiasesincontributorysciencedata